1 / 15

Blue light

Blue light. Подобие треугольников. Первый признак подобия. Изобразим:. Чем отличаются фигуры в каждой представленной паре? Что у них общего? Почему они не равны?. а) две неравные окружности; б) два неравных квадрата; в) два неравных равнобедренных прямоугольных треугольника;

duyen
Télécharger la présentation

Blue light

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Blue light Подобие треугольников. Первый признак подобия

  2. Изобразим: Чем отличаются фигуры в каждой представленной паре? Что у них общего? Почему они не равны? а) две неравные окружности; б) два неравных квадрата; в) два неравных равнобедренных прямоугольных треугольника; г) два неравных равносторонних треугольника.

  3. Определение. • Два треугольника называются подобными, если углы одного соответственно равны углам другого и соответствующие стороны пропорциональны. • Коэффициент пропорциональности называется коэффициентом подобия.

  4. Что значит, что Δ АВС подобен треугольнику ΔA1В1С1? Углы равны Стороны пропорциональны Для своих изображенных пар фигур определите их коэффициент подобия.

  5. ΔАВС ~ ΔA1В1С1 Δ АВС подобен ΔA1В1С1. similitude сходство, подобие

  6. Δ MNK ~ ΔEFD MN M NK K E EF FD D • Укажите пропорциональные стороны = =

  7. Δ SDK~ ΔRHT • Укажите пропорциональные стороны Δ TOP~ ΔSRT Δ DSX~ ΔXYZ

  8. Стороны треугольника равны 5 см, 8 см и 10 см. Найдите стороны подобного ему треугольника, если коэффициент подобия равен: а) 0,5; б) 2. а) 10 см, 16 см и 20 см. б)2,5 см, 4 см и 5 см;

  9. подобных В подобных треугольниках АВС и А1В1С1 АВ = 8 см, ВС = 10 см, А1В1 = 5,6 см, А1С1 = 10,5 см. Найдите АС и В1С1. В1 В 5,6 5,6 8 8 10 10 А С А1 С1 10,5 10,5 y x Ответ:AC = 14 м, B1C1 = 7 м.

  10. Физкультминутка: • – Пройдите глазами по знаку подобия.– Закройте глаза. – Расслабьте мышцы лба.– Медленно переведите глазные яблоки • в крайнее левое положение.– Почувствуйте напряжение глазных мышц.– Зафиксируйте положение– Теперь медленно с напряжением • переведите глаза вправо.– Повторите четыре раза.– Откройте глаза.– Пройдите глазами по знаку подобия. • Долго тянется урокМного вы решалиНе поможет тут звонок,Раз глаза устали.Занимаемся все сразу Повторим четыре раза.

  11. Первый признак подобия Теорема.(Первый признак подобия.) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны. С1 C' С В1 А1 В' В А

  12. Теорема. (Первый признак подобия треугольников.) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны. Дано:ΔАВС иΔА1В1С1 <A=<A1,<B=<B1. Доказать: ΔАВС иΔА1В1С1.

  13. 1. 2.Отложим: отрезок АВ'= А1В1 (т. В'є AB) прямую В'С' || ВС 3. Δ АB'C' = Δ А1В1С1(по УСУ ) • А1 В' =AB – по построению, • <А=<A1 • <B=<B1=< А1 В' C' А1 В' =A1B1 А1 C' =A1C1 Значит, по определению, треугольники подобны. 3.По теореме о пропорциональных отрезках: Аналогичным образом доказывается, что имеет место равенство .

  14. Подобны ли прямоугольные треугольники, если у одного из них есть угол 40о, а у другого 50о? Два треугольника подобны. Два угла одного треугольника равны 55о и 80о. Найдите наименьший угол второго треугольника.

  15. В трапеции ABCD (BC||AD) проведите диагонали и найдите образовавшиеся подобные треугольники. Назовите точку пересечения диагоналей O. C B O D A

More Related