450 likes | 562 Vues
To the adaptive multibody gravity assists tours design in Jovian system for the Ganymede Landing. Grushevskii A. Grushevskii A.V., Golubev Yu.F, Koryanov V.V., Tuchin A.G. To the adaptive multibody gravity assist tours design in Jovian system for the Ganymede Landing.
E N D
To the adaptive multibody gravity assists tours design in Jovian system for the Ganymede Landing. Grushevskii A.
Grushevskii A.V.,Golubev Yu.F, Koryanov V.V., Tuchin A.G.To the adaptive multibody gravity assist tours design in Jovian system for the Ganymede Landing 24th International Symphosium on Space Flight Dynamics, May 5-9, 2014 Keldysh Institute of Applied MathematicsRussian Academy of Sciences
ESA- JUICE Mission Debut Interplanetary part- Ganymede Flyby- JOI- G&C-Flyby Sequence GOI
Roskosmos part: +Ganymede Landing • Flexible JOI Data • Flexible G&C-Flyby Sequence • GOI • Ganymede Circular Orbit • Landing
-Min Delta V (ballistic scenarios, if it’s possible) -Radiation Doze Accumulation (TILD) -Duration -Min V-infinity relative Ganymede MaiN Problems
Roscosmos part: Ganymede Landing. Resonance beginning. Typical scenario ESTK complex of Keldysh IAM RAS Ballistic Center Navigation and Ancillary Information Facility (NAIF) - NASA Refined Flyby Model
Joining to Jovian System After Interplanetary Part • Time of Jovian sphere of action2029/06/03 09:25:10 UTC • Flyby hyperbola( J2000) • Semimajor axe, km 5252.572592 • Eccentricity 1.163115 • Inclination 23.44 grad • V-Infinity, km/s 4.91 • Pericenter Time 2029/08/29 17:20:35 UTC • Pericenter altitude 12.5 RJ
1 GAM (near Ganymede) Callisto Europa IO Ganymede Vx=0.000755, Vy= 0.005958, Vz=0.003207, |V|=0.006808
2 GAM Vx-0.004218, Vy=0.002570, Vz=0.001342, |V|=0.005118
3 GAM Vx=-0.014865, Vy=0.012230, Vz=0.004934, |V|=0.019872
4 GAM Vx=-0.003701, Vy=0.003109, Vz=0.001477, |V|=0.005055
5 GAM Vx=-0.001707, Vy=0.005016, Vz=0.002694, |V|=0.005944
6 GAM Vx=-0.006027, Vy=0.003142, Vz=-0.000433, |V|=0.006811
Typical radiation hazard analysis on the ENDGAME phase Dynamics of the radiation accumulation
Typical radiation hazard analysis on the ENDGAME phase Dynamics of the radiation accumulation- zoom scale
Dynamics of the radiation accumulation- on one orbit. Quasi-singularity
Ti (Tisserand’s Criterion) Restricted 3 Body ProblemJacobi Integral J Tisserands Parameter T (see R.Russel, S.Campagnola) “Isoinfine” (“Captivity”)
Tisserand-Poincare graph(N.Strange, J.Sims, K.Kloster, J.Longuskiaxes Rp-T(A.Labunskii, O.Papkov, K.Sukhanov axes Ra-Rp- the same)
CB-Classic Billiard Duplex Shutting CGB-Classic Gravitational Billiard
Using PHASE BEAM method of Gravity Assists Sequences Determination
Previous front trees of Tisserand graphfor Russian “Laplace” mission
Phase Selection • We need the criterion of selection of encounters for V-infinity reduction • The “Magic” code is: “Ganymede”+”Not Ganymede”+”Ganymede” Or “G”^”C”^…^”C”^”G”
Real Phase Searching(axes Ra-Rp in RJ) Rebounds Rebounds-ReRebounds
Research basement • Orbit correction algorithm preceding spacecraft’s Jovian moons gravity assists • Gravity assists refined model • ESTK KIAM RAS Ballistic centre complex • Navigation and Ancillary Information Facility (NAIF) -NASA ephemeris— will be refined during JUICE byESA
Fly-by sequence selection strategy • Lambert problem solution; • The phase-beams method; • Delta V minimizations; • Gravity-assist parameters permanent corrections; • Simulations results are presented.
Callisto & Ganymede • Tour design problem lends itself well to optimization schemes Callisto & Ganymede assists us to minimize fuel requirements