1 / 42

George A. Souliotis Laboratory of Physical Chemistry, Department of Chemistry,

Studies of N/Z equilibration via Heavy-Residue Isoscaling. George A. Souliotis Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece and Cyclotron Institute, Texas A&M University, College Station, Texas, USA

dyre
Télécharger la présentation

George A. Souliotis Laboratory of Physical Chemistry, Department of Chemistry,

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Studies of N/Z equilibration via Heavy-Residue Isoscaling George A. Souliotis Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece and Cyclotron Institute, Texas A&M University, College Station, Texas, USA International Workshop on Nuclear Dynamics and Thermodynamics, in honor of Prof. Joe Natowitz TAMU, College Station, 19-22 Aug. 2013

  2. BigSol Setup at TAMU: Sept. 2002

  3. BigSol Line results: Rare Isotope Production ( Sept.-Oct. 2003) Example of Z-A distribution of fragments from 64Ni(25MeV/u)+64Ni B=1.473, IBigSol=79.3 A Angular acceptance: 1.5-3.0 deg. Z A Co -1p+1n Neutron-Rich fragments from 64Ni (25MeV/u) + 64Ni (4.0mg/cm2) B=1.900 Tm, IBigSol=102.5 A ibeam = 1 pnA, 4 hour run Angular acceptance: 1.5-3.0 deg. Fe -2p+2n Mn Cr Z -4p A

  4. Overview of Heavy-Residue work : Experimental work at Texas A&M: deepinelastic collisions below the Fermi energy: 86Kr(25MeV/nucleon) + 64Ni,124Sn PRL 91, 022701 (2003) 86Kr(15MeV/nucleon) + 64Ni,124Sn PRC 84, 064607 (2011) Findings:Peripheral collisions: enhanced production of n-rich nuclei Heavy Residues as probes of nuclear dynamics and EOS: Heavy-residue isoscaling: PRC 68, 024605 (2003) PRC 73, 024606 (2006) N/Z equilibration: PLB 588, 35 (2004) Present work: Heavy residue Isoscaling in 15 MeV/nucleon reactions Evolution of the N/Z w.r.t. to TKEL (~ degree of dissipation) Comparisons with the DIT and CoMD models.

  5. Approaching phase: Projectile (Zp,Ap) • Neutrons • Protons θ b: impact parameter θ: scattering angle b Target (Zt,At) Collisions between Heavy Ions at Fermi Energies (10<E/A < 40MeV) Grazing angle, θgr: nuclei in touching configuration Overlap (interaction) phase: exchange of nucleons: Deep Inelastic Transfer (DIT) Model L. Tassan-Got and C. Stephan, Nucl. Phys. A 524, 121 (1991) excited projectile-like fragment (PLF) or quasi-projectile excited target-like fragment (TLF) or quasi-target

  6. 86Kr 86Kr 36 36 50 50 124 Sn Excited Projectile-like Fragment (PLF) or Quasi-projectile 50 74 Projectile 112 Sn 50 62 Target The Process of N/Z Transport * and Equilibration N/Z = 1.40 N/Z = 1.48 (N/Z)eq = 1.44 N/Z = 1.40 Nucleon exchange: Deep Inelastic Transfer (DIT) Model L. Tassan-Got and C. Stephan, Nucl. Phys. A 524, 121 (1991) N/Z = 1.24 (N/Z)eq = 1.30 *or isospin diffusion

  7. CoMD Evolution of 86Kr Nucleus: t = 0-500 fm/c Δt = 10 fm/c • Neutrons • Protons 86Kr 36 50 z Microscopic Calculations: Constrained Molecular Dynamics (CoMD)* CoMD : Quantum Molecular Dynamics model (Semiclassical) • Nucleons are considered as Gaussian wavepackets • N-N effective interaction ( Skyrme-type with K = 200 ) • Several forms for N-N symmetry potential Vsym(ρ) • Pauli principle imposed (via a phase-space ‘constraint’ algorithm ) • Fragment recognition algorithm (Rmin = 3.0 fm) *M. Papa, A. Bonasera et al., Phys. Rev. C 64, 024612 (2001)

  8. b = 10 fm t = 0-300 fm/c Δt = 10 fm/c b = 8 fm t = 0-300 fm/c Δt = 10 fm/c Peripheral Collision Semi-Peripheral Collision • Neutrons • Protons 124Sn 124Sn 50 50 74 74 z z z z 86Kr 86Kr 36 36 50 50 CoMD Calculations: 86Kr (15 MeV/nucleon) + 124Sn CoMD: Constraint Molecular Dynamics;M. Papa, A. Bonasera, Phys. Rev. C 64, 024612 (2001)

  9. Separation Stage I Dispersive Image SeparationStage II Production Target D2 D1 Q3 Wien Filter Q2 Final Achromatic Image Q1 PPAC1 Start T,X,Y Rotatable Arm Reaction Angle: 0-12o (selectable) Q4 Q5 MARS Acceptances: Angular: 9 msr Momentum: 4 % Βρ = mυ/Q Si Telescope ErΔE PPAC2 Stop T, X,Y MARS Recoil Separator and Setup for Heavy-Residue / RIB Studies* K500 Beam D3 *G. A. Souliotis et al., Nucl. Instr. Methods B, 266, 4692 (2008) and references therein

  10. Experimental Details Reactions studied with MARS: Δθ = 2.2-5.8o86Kr22+ (15 MeV/u, 5 pnA) + 64Ni, 58Ni (gr~ 6o) Δθ =5.6-9.2o86Kr + 124Sn, 112Sn (gr~ 9o) Extracted physical quantities: Velocity, Energy loss, Total Energy Mass-to-charge ratio: A/Q B ~ A/Q  Atomic Number ZZ ~  ΔE1/2 Ionic charge Q Q ~ f(E, , B) Mass number A A = Qint  A/Q Reconstructed: Fragment Yield Distribution Y(Z, A, υ)

  11. Experimental Mass Distributions: 86Kr (15 MeV/u) + 64,58Ni* • 86Kr + 64Ni (15 MeV/u) • 86Kr + 58Ni (15 MeV/u) • 1p • 2p 35Br 34Se Large cross sections of n- pickup products • 3p • 4p 33As 32Ge • 5p • 6p 30Zn 31Ga 23 *G. A. Souliotis et al., Phys. Rev. C 84, 064607 (2011)

  12. Comparison of calculations with data: 86Kr (15 MeV/nucleon) + 64Ni 86Kr + 64Ni (15 MeV/u)* DIT/SMM ------ DITm/SMM 35Br 34Se 33As 32Ge *data: G.A. Souliotis et al., PRC 84, 064607 (2011) DIT : L. Tassan-Got, C. Stephan, Nucl. Phys. A 524, 121 (1991) DITm: M. Veselsky, G.A. Souliotis, Nucl. Phys. A 765, 252 (2006) SMM: Statistical Multifragmentation Model: A. Botvina et al., Phys. Rev. C 65, 044610 (2002); Nucl. Phys. A 507, 649 (1990) 30Zn 31Ga * P.N. Fountas, G.A. Souliotis et al., in preparation

  13. Comparison: Data, Calculations: 86Kr (15 MeV/nucleon) + 64Ni 86Kr + 64Ni (15 MeV/u)* CoMD/SMM -----CoMD/GEMINI 35Br 34Se 33As 32Ge *data: G.A. Souliotis et al., Phys. Rev. C 84, 064607 (2011) CoMD: Constrained Molecular Dynamics: M.Papa et. al., Phys. Rev. C 64, 024612 (2001) GEMINI: Binary Decay Code: R. Charity, Nucl. Phys. A 483, 391 (1988) SMM: Statistical Multifragmentation Model: A. Botvina et al., Phys. Rev. C 65, 044610 (2002); Nucl. Phys. A 507, 649 (1990) 31Ga 30Zn * P.N. Fountas, G.A. Souliotis et al., in preparation

  14. Scaling of Yield Ratios: 15MeV/nucleon data* R21 (N,Z)= Y2/Y1 •86Kr+64Ni,58Ni data at 4o (gr=6.0o) R21 = C exp ( α N ) •86Kr+124Sn,112Sn data at 7o (gr=9.0ο) *G. A. Souliotis et al., in preparation

  15. Isoscaling Parameter α : 15MeV/u data** ○86Kr+64Ni,58Ni ( 4o data) ●86Kr+124Sn,112Sn (7o data) R21 = C exp ( α N ) α = 4 Csym/T ( (Z/A)12– (Z/A)22) * Quasi-projectiles 1: n-poor 2:nrich M. B. Tsang et al. Phys. Rev. C 64, 054615 (2001) A.S. Botvina et al. Phys. Rev. C 65, 044610 (2002) P. Marini et al, Phys. Rev. C 85, 034617 (2012) * **G. A. Souliotis et al., (in preparation)

  16. Peripheral collision: tinteraction short Velocity, TKEL, E* vs Z 15MeV/udata** Semi-peripheral collisions: tinteraction longer ○86Kr+64Ni,58Ni ( 4o data) ●86Kr+124Sn,112Sn (7o data) **G. A. Souliotis et al., (in preparation)

  17. Residues: 86Kr (15 MeV/u) + 64,58Ni 86Kr+58Ni -------- DIT -------- CoMD (asy-stiff) -------- CoMD (asy-soft) 86Kr+ 64Ni DIT: Deep Inelastic Transfer: L. Tassan-Got, Nucl. Phys. A 524, 121 (1991) CoMD: Constraint Molecular Dynamics •MARS Isoscaling data* Δ(Z/A)2 = (Z/A)21- (Z/A)2 2 = α T / (4 Csym ) Fermi gas: T2 = K0 (/o)2/3 * K0 : inv. lev. dens. param. at o (K0 = 12 ) Assume QP at normal density=o Csym =23 MeV * G.A. Souliotis et al. (in preparation)

  18. Residues: 86Kr (15 MeV/u) + 124,112Sn 86Kr+112Sn -------- DIT -------- CoMD (asy-stiff) -------- CoMD (asy-soft) 86Kr+ 124Sn •MARS Isoscaling data* Δ(Z/A)2 = (Z/A)21- (Z/A)2 2 = α T / (4 Csym )

  19. α,V,TKEL, E* vs Z 25MeV/udata** ●86Kr+124Sn,112Sn (4o data) Peripheral collision: tinteraction short Semi-peripheral collisions: tinteraction long **G. A. Souliotis et al., PLB 588, 35 (2004)

  20. Residues: 86Kr (25 MeV/u) + 124,112Sn 86Kr+112Sn -------- DIT -------- CoMD (asy-stiff) -------- CoMD (asy-soft) 86Kr+ 124Sn •MARS Isoscaling data: G.A.Souliotis et al. PRC 68, 024605 (2003) Δ(Z/A)2 = (Z/A)21- (Z/A)2 2 = α T / (4 Csym )

  21. Interaction time vs TKEL : CoMD calculation ●86Kr+124Sn,112Sn (25 MeV/u) ●86Kr+124Sn,112Sn (15 MeV/u) ●86Kr+64Ni,58Ni (15MeV/u) ●40Ar+64Ni,58Ni (15MeV/u) TKEL/TKELmax = 1- exp(-t/τ) τ ~ 150 fm/c

  22. FAUST/Q-Triplet Setup at TAMU* * Paul Cammarata et al, ( SJYgroup )

  23. Summary and Conclusions ● Study of heavy-residue isoscaling from peripheral collisions. Information on N/Z transport and equilibration via the correlation: Δ vs TKEL ● Microscopic calculations of peripheral collisions with CoMD. No sensitivity to Vsym(ρ) found in the Δ vs TKEL correlation Plans for future work: ● Detailed comparisons with the theoretical codes ( DIT, CoMD,…. ) ● Experimental measurements of 15 MeV/nucleon reactions with the TAMU FAUST/Q-Triplet system (reconstruct QP). Extension of experimental studies using neutron-rich RIBs from TAMU RIB Upgrade*, SPES at Legnaro, SPIRAL-II at GANIL and other facilities *TAMU Cyclotron Upgrade, see :http://cyclotron.tamu.edu

  24. Acknowledgements: CollaboratorsM. Veselsky, S. Galanopoulos, Z. Kohley, A. McIntosh, L.W. May, B.C. Stein, S.J. YennelloSpecial thanks to: A. Bonasera, TAMU and INFN, Catania, Italy,A. Botvina, FIAS, Frankfurt, GermanyThis work was supported in part by:The Robert A. Welch Foundation: Grant Number A-1266 and,The Department of Energy: Grant Number DE-FG03-93ER40773

  25. END of Talk : Additional material here:

  26. ρoverlap = ρprojectile + ρtarget R =12 fm 124Sn 124Sn 86Kr 86Kr ρoverlap ~ 1/4 ρo 74 74 50 50 50 50 36 36 Peripheral collision: tinteraction short n p ρoverlap ~ 1.0-1.5 ρo R =10 fm Semi-peripheral collision: tinteraction longer n p Peripheral Collisions: 86Kr + 124Sn Peripheral Collisions: can provide information on the evolution of the N/Z degree of freedom and ( via microscopic calculations) the effective nucleon-nucleon interaction Calculations with a Thomas-Fermi code: V. Kolomietz, Phys. Rev. C 64, 024315 (2001)

  27. Isoscaling: 40Ar (15MeV/nucleon) + 64Ni,58Ni •40Ar + 64Ni,58Ni (data inside gr=6.2ο) R21 = C exp ( α N ) α = 4 Csym/T ( (Z/A)12– (Z/A)22) Quasi-projectiles 1: n-poor 2:nrich GS files in “ar07” : anal_mars_ar_jun07 z1_iso_arni_tex.fit z1_iso_arni_figure.tex => *.ps a_iso_arni_tex.fit a_iso_arni_figure.tex => *.ps

  28. Velocity, E*, TKEL vs Z correlations:15MeV/u data ●40Ar+64Ni,58Ni (4o data) υmin => E*/A ~2.0 MeV GS files in “ar07” : anal_mars_ar_jun07 vz_iso_arni_tex.fit vz_iso_arni_figure.tex => *.ps

  29. Residues: 40Ar (15 MeV/u) + 64,58Ni 40Ar+58Ni Csym(ρ) 40Ar+ 64Ni -------- DIT -------- CoMD (linear) -------- CoMD (a-soft) -------- CoMD (a-stiff) -------- CoMD (Vsym = 0) •MARS Isoscaling data* Δ(Z/A)2 = (Z/A)21- (Z/A)2 2 = a T / (4 Csym ) GS files in “ar07” : anal_mars_ar_jun07 azel1_arni_tex.fit azel1_arni_figure.tex => *.ps

  30. TKEL correlations (I): All available MARS data О86Kr(15MeV/u)+64,58Ni(4o data) ●86Kr(15MeV/u)+124,112Sn(7o data) ■86Kr(25MeV/u)+124,112Sn(4o data) ▲40Ar(15MeV/u)+64,58Ni (4o data) GS files in “kr07” : anal_mars_kr_jun07 azel_xxxx_tex.fit azel_xxxx_figure.tex => *.ps

  31. TKEL correlations (II): All available MARS data О86Kr(15MeV/u)+64,58Ni(4o data) ●86Kr(15MeV/u)+124,112Sn(7o data) ■86Kr(25MeV/u)+124,112Sn(4odata) ▲40Ar(15MeV/u)+64,58Ni (4o data) υrel / υrel,max GS files in “kr07” : anal_mars_kr_jun07 azelv_xxxx_tex.fit azelv_xxxx_figure.tex => *.ps

  32. Nuclide cross sections from: 40Ar (15MeV/nucleon) + 64Ni,58Ni, 27Al 40Ar +64Ni K Ar (+1p) 40Ar +58Ni 40Ar +27Al Cl S 38S σ = 20 mb (-1p) (-2p) largest cross sections with the n-rich 64Ni target Si P (-3p) (-4p)

  33. Mass Distributions: 86Kr (15 MeV/u) + 64Ni* • 86Kr + 64Ni (15 MeV/u) • 86Kr + 64Ni (25 MeV/u)* • ----- DIT/GEMINI ----- EPAX • 1p • 2p 35Br 34Se Large cross sections of n- pickup products • 3p • 4p 33As 32Ge • 5p • 4p 30Zn 31Ga 23 *G. A. Souliotis et al., Phys. Lett. B 543, 163 (2002)

  34. The Superconducting Solenoid Rare Isotope Line at TAMU: Schematic diagram of the setup for heavy-residue studies from DIC:

  35. Results of BigSol Line tests: Charge State Distributions Charge state distribution at PPAC1 (thru 2-inch hole) of 64Ni (35MeV/u) after a mylar stripper. B=2.020 Tm, IBigSol=109.0 A Angular acceptance: 2.0-6.0 deg. Y 28+ 27+ Angular acceptance: 3.0-6.0 deg. X

  36. BigSol Line: 136Xe DIC data Example of Z-E/A distribution of fragments from 136Xe (20 MeV/u) data: ( ΔΕ-Ε-TOF techniques, use of large area Si and PPACs) : 136Xe+124Sn 136Xe+232Th up to + 6 p 136Xe “elastic” 136Xe “elastic” Z Z E/A (MeV/u) E/A (MeV/u) B=1.325 Tm, Angular acceptance: 1.5-3.0 deg.

  37. END of Talk ( ΙI ) Quad Triplet :

  38. Quadrupole Triplet: 1st order optics PPAC1 t,X,Y x-z plane PPAC2, ΔE,E Q1 Q2 Q3 Target Beam θ0= 30 mr φ0 =30mr y-z plane Rays through QTS: 46Ar18+(14.7 MeV/u) Bρ=1.400Tm Ion Optics calculations with COSY-Infinity (M. Berz et al.)

  39. Quadrupole Triplet: 3d order optics x-z plane Q1 Q2 Q3 PPAC1 t,X,Y PPAC2, ΔE,E Target Beam θ0= 30 mr φ0 =30mr y-z plane Rays through QTS: 46Ar18+(14.7 MeV/u) Bρ=1.400Tm Ion Optics calculations with COSY-Infinity (M. Berz et al.)

  40. Quadrupole Triplet: 3d order optics PPAC1 t,X,Y x-z plane Q1 Q2 Q3 PPAC2, ΔE,E Target Beam 0.0% Δp/p 2.5% Δp/p 5.0% Δp/p θ0= 30 mr φ0 =30mr y-z plane Rays through QTS: 46Ar18+(14.7 MeV/u) Bρ=1.400Tm Ion Optics calculations with COSY-Infinity (M. Berz et al.)

More Related