1.77k likes | 1.96k Vues
Computer and Robot Vision II. Chapter 15 Motion and Surface Structure from Time Varying Image Sequences. Presented by: 傅楸善 & 王林農 0917 533843 r94922081@ntu.edu.tw 指導教授 : 傅楸善 博士. 15.1 Introduction.
E N D
Computer and Robot Vision II Chapter 15Motion and Surface Structure from Time Varying Image Sequences Presented by: 傅楸善 & 王林農 0917 533843 r94922081@ntu.edu.tw 指導教授: 傅楸善 博士
15.1 Introduction • Motion analysis involves estimating the relative motion of objects with respect to each other and the camera given two or more perspective projection images in a time sequence. DC & CV Lab. CSIE NTU
15.1 Introduction (cont’) • Real-world applications: industrial automation and inspection, robot assembly, autonomous vehicle navigation, biomedical engineering, remote sensing, general 3D-scene understanding DC & CV Lab. CSIE NTU
15.1 Introduction (cont’) • object motion and surface structure recovery from: • observed optic flow • point correspondences DC & CV Lab. CSIE NTU
15.2 The Fundamental Optic Flow Equation • (x, y, z): 3D point on moving rigid body • (u, v): perspective projection on the image plane • f: camera constant • (u, v): velocity of the point (u, v) . . DC & CV Lab. CSIE NTU
15.2 The Fundamental Optic Flow Equation (cont’) • take time derivatives of both sides • yields the fundamental optic flow equation: . . . . . . . . . . . DC & CV Lab. CSIE NTU
15.2 The Fundamental Optic Flow Equation (cont’) • general solution: (λ is a free variable) . . . . . DC & CV Lab. CSIE NTU
15.2.1 Translational Motion • Known: • N-point optic flow field: • Unknown: • corresponding unknown 3D points: • all points moving with same but unknown velocity • (x, y, z) • can be solved up to a multiplicative constant . . . . . DC & CV Lab. CSIE NTU
15.2.2 Focus of Expansion and Contraction • Known: • 3D motion is translational • one 2D projected point (u, v) has no motion: • thus translational motion is in a direction along the ray of sight . . DC & CV Lab. CSIE NTU
15.2.2 Focus of Expansion and Contraction (cont’) • focus of expansion (FOE): if 3D point field moving toward camera • FOE: motion-field vectors radiate outward from that point • focus of contraction (FOC): if 3D point field moving away from camera • FOC: vectors radiate inward toward diametrically opposite point flow pattern of the motion field of a forward-moving observer DC & CV Lab. CSIE NTU
DC & CV Lab. CSIE NTU
15.2.3 Moving Line Segment • Known: • fixed distance between two unknown 3D points • translational motion with common velocity (x, y, z) • corresponding optic flow: . . . DC & CV Lab. CSIE NTU
15.2.3 Moving Line Segment (cont’) • Unknown: • : two unknown 3D points • common velocity: (x, y, z) . . . DC & CV Lab. CSIE NTU
15.2.3 Moving Line Segment (cont’) • From the perspective projection equations: • From the optic flow equation: DC & CV Lab. CSIE NTU
15.2.3 Moving Line Segment (cont’) • From the known length of the line segment: • The optic flow equation (15.9) permits us to obtain a least squares solution for z in terms of z1 and z2, from DC & CV Lab. CSIE NTU
15.2.3 Moving Line Segment (cont’) • We obtain • Substituting this back into the equation, we can solve z2 in terms of z1:z2=kz1 DC & CV Lab. CSIE NTU
15.2.3 Moving Line Segment (cont’) • Substitute the relations for (x1, y1, z1) from equations into Eq.(15.10) to obtain • Hence: DC & CV Lab. CSIE NTU
15.2.4 Optic Flow Acceleration Invariant . • Since • differentiating general solution in Sec 15.2 and solve for (x, y, z) .. .. .. . .. .. . .. . .. .. .. DC & CV Lab. CSIE NTU
joke DC & CV Lab. CSIE NTU
15.3 Rigid-Body Motion • Rigid-body motion: no relative motion of points w.r.t. (with respect to) one another • Rigid-body motion: points maintain fixed position relative to one another • Rigid-body motion: all points move with the body as a whole DC & CV Lab. CSIE NTU
15.3 Rigid-Body Motion (cont’) • R(t): rotation matrix • T(t): translation vector • p(0): initial position of given point • R(0)=I, T(0)=0 • p(t): position of given point at time t DC & CV Lab. CSIE NTU
15.3 Rigid-Body Motion (cont’) • Rigid-body motion in displacement vectors: • velocity vector: time derivative of its position: . . . DC & CV Lab. CSIE NTU
15.3 Rigid-Body Motion (cont’) • Since • (a) translational-motion field under projection onto hemispherical surface only translational-component motion useful in determining scene structure • (b) rotational-motion field under projection onto hemispherical surface rotational-motion field provides no information about scene structure . . . DC & CV Lab. CSIE NTU
15.3 Rigid-Body Motion (cont’) DC & CV Lab. CSIE NTU
15.3 Rigid-Body Motion (cont’) • we can describe rigid-body motion in instantaneous velocity by . DC & CV Lab. CSIE NTU
15.3 Rigid-Body Motion (cont’) • :angular velocities in three axes • : translational velocities in three axes • from rigid-body-motion equation . . . DC & CV Lab. CSIE NTU
15.3 Rigid-Body Motion (cont’) • and perspective projection equation • we can determine an expression for z: . . DC & CV Lab. CSIE NTU
15.3 Rigid-Body Motion (cont’) • after simplification . . DC & CV Lab. CSIE NTU
15.3 Rigid-Body Motion (cont’) • image velocity: expressed as sum of translational field and rotational field • (x, y, z): 3D coordinate before rigid-body motion in displacement vectors • (x’, y’, z’): 3D coordinate after rigid-body motion in displacement vectors • : rotation angles in three axes • : translation in three axes DC & CV Lab. CSIE NTU
15.3 Rigid-Body Motion (cont’) • Rigid-body motion in displacement vectors: DC & CV Lab. CSIE NTU
15.3 Rigid-Body Motion (cont’) • motion in displacement vector and instantaneous velocity is different: • e.g. moon encircling earth • instantaneous velocity: first order approximation of displacement vector • first order approximation: when small, DC & CV Lab. CSIE NTU
15.3 Rigid-Body Motion (cont’) • first order approximation: when time=1 thus • x=(x’ - x)/1 • first order approximation: . DC & CV Lab. CSIE NTU
joke DC & CV Lab. CSIE NTU
15.4 Linear Algorithms for Motion and Surface Structure from Optic Flow • 15.4.1 The Planar Patch Case • : arbitrary object point on planar patch at time t • : central projective coordinates of p(t) onto image plane z= f DC & CV Lab. CSIE NTU
15.4.1 The Planar Patch Case . . • : instantaneous velocity of moving image point • : optic flow image point • : instantaneous rotational angular velocity • : instantaneous translational velocity . . DC & CV Lab. CSIE NTU
15.4.1 The Planar Patch Case (cont’) • unit vector n(t): orthogonal to moving planar patch • rigid planar patch motion represented by rigid-motion constraint: . DC & CV Lab. CSIE NTU
15.4.1 The Planar Patch Case (cont’) • from above two equations: • Let • Rigid-motion constraint could be written as DC & CV Lab. CSIE NTU
15.4.1 The Planar Patch Case (cont’) • denote the 3 x 3 matrix by W and its three row vectors by • W:called planar motion parameter matrix • since skew symmetric DC & CV Lab. CSIE NTU
15.4.1 The Planar Patch Case (cont’) . • above equation can be written as • from perspective projection equations: • taking time derivatives of these equations we have . . . . . . . . DC & CV Lab. CSIE NTU
15.4.1 The Planar Patch Case (cont’) • substitute equations into above equations: • from third row • substitute z to obtain optical flow-planar motion equation . . . . . . . . . DC & CV Lab. CSIE NTU
15.4.1 The Planar Patch Case (cont’) • we have 2N linear equations: n=1,…,N: • optic flow-planar motion recovery: first solve W then find . . DC & CV Lab. CSIE NTU
15.4.2 General Case Optic Flow-Motion Equation • 1. set up optic flow-motion equation not involving depth information • 2. solve it by using linear least-squares technique DC & CV Lab. CSIE NTU
15.4.3 A Linear Algorithm for Solving Optic FlowMotion Equations DC & CV Lab. CSIE NTU
15.5.4 Mode of Motion, Direction of Translation, and Surface Structure • mode of motion: whether translation k=0 or not • direction of translation: direction of k • surface structure: relative depth when k 0 DC & CV Lab. CSIE NTU
15.4.5 Linear Optic Flow-Motion Algorithm and Simulation Results • motion and shape recovery algorithms should answer three questions: • minimum number of points to compute motion and shape • what set of optic flow points violate rank assumption e.g. collinearity… • What’s the accuracy of estimated motion from noisy optic flow? DC & CV Lab. CSIE NTU
joke DC & CV Lab. CSIE NTU
15.5 The Two View-Linear Motion Algorithm DC & CV Lab. CSIE NTU
15.5.1 Planar Patch Motion Recovery from Two Perspective Views: A Brief Review • Two View-Planar Motion Equation • imaging geometry for two view-planar motion • rigid planar patch in motion in half-space z< 0 DC & CV Lab. CSIE NTU
DC & CV Lab. CSIE NTU
15.5.1 Planar Patch Motion Recovery from Two Perspective Views: A Brief Review (cont’) • : arbitrary object point before motion • : same object point after motion • : central projective coordinates of • f : camera constant DC & CV Lab. CSIE NTU