610 likes | 3.19k Vues
ERT207 Analytical Chemistry Gravimetric Analysis and Precipitation Equilibria. Pn Syazni Zainul Kamal. CO2 : Ability to classify and use separation techniques and gravimetric methods for mass determination. Introduction. The term gravimetric pertains to a Weight Measurement.
E N D
ERT207 Analytical ChemistryGravimetric Analysis and Precipitation Equilibria Pn Syazni Zainul Kamal
CO2 : Ability to classify and use separation techniques and gravimetric methods for mass determination
Introduction • The term gravimetric pertains to a Weight Measurement. • Gravimetric method is one in which the analysis is completed by a weighing operation. • Gravimetric Analysis is a group of analytical methods in which the amount of analyte is determined by the measurement of the mass of a pure substance containing the analyte. • Gravimetric Methods can also be defined as quantitative methods based on the determining the mass of a pure compound to which the analyte is chemically related.
There are two main types of gravimetric analyses: A) Precipitation analyte must first be converted to a solid (precipitate) by precipitation with an appropriate reagent. The precipitates from solution is filtered, washed, purified (if necessary) and weighed. B) Volatilization In this method the analyte or its decomposition products are volatilised (dried) and then collected and weighed, or alternatively, the mass of the volatilised product is determined indirectly by the loss of mass of the sample.
Example for Precipitation:- • Calcium can be determined gravimetrically by precipitation of calcium oxalate and ignition of the oxalate ion to calcium oxide. Ca2+ + C2O42- →CaC2O4 CaC2O4 → CaO + CO2 + CO • The precipitate thus obtained are weighed and the mass of calcium oxide is determined.
Example for Volatilisation:- The analyte or its decomposition products are volatilised at a suitable temperature. The volatile product is then collected and weighed, i.e. the mass of the product is indirectly determined from the loss in mass of the sample. Example Water can be separated from most inorganic compounds by ignition, the evolved water can then be absorbed on any one of several solid desiccants. The weight of water evolved may be calculated from the gain in weight of the absorbent.
Not all insoluble precipitates are well suited for gravimetric analysis. It is important to consider what properties are required in order that a precipitate be applicable for a quantitative precipitation method:- Solubility Filterability Chemical Composition Other Desirable Properties
Solubility The product must be sufficiently insoluble to prevent the loss of weight. Filterability Precipitate formed should be adoptable to simple and rapid filtration methods. Chemical Composition The product must be of known chemical composition. Other Desirable Properties Other factors effecting the stability and purity of the precipitate.
For a successful determination in gravimetric analysis the following criteria should be met :- • The desired substance must be completely precipitated. In most determination the precipitate is of such low solubility that losses from dissolution are negligible. An additional factor is the common ion effect, this further decrease the solubility of the precipitate. • E.g. When Ag+ is precipitated out by addition of Cl- • Ag+ + Cl- = AgCl • The low solubility of AgCl is reduced further by the excess of Cl- which is added force to the reaction to proceed towards right side.
For a successful determination in gravimetric analysis the following criteria should be met :- (2)The weighed form of the product should be of known composition. (3)The product should be pure and easily filtered. It is usually difficult to obtain a product which is pure or which is free from impurities. This could be reduced by careful precipitation and sufficient washing.
Gravimetric Analysis • Gravimetric analysis is potentially more accurate and more precise than volumetric analysis • Gravimetric analysis avoids problems with temperature fluctuations, calibration errors, and other problems associated with volumetric analysis • But there are potential problems with gravimetric analysis that must be avoided to get good results. • Proper lab technique is critical
Steps in a Gravimetric Analysis 1. Preparation of the solution 2. Precipitation 3. Digestion 4. Filtration 5. Washing 6. Drying or ignition 7. Weighing 8. Calculation
1. Preparation of analyte solution • Gravimetric analysis usually involves precipitation of analyte from solution. • 1st step – prepare the analyte solution • May need : - preliminary separation to separate potential interferences before precipitating analyte - adjustment of solution condition (pH/temp/vol/conc of test substance) to maintain low solubility of precipitate & max precipitate formation. Eg Calcium oxalate insoluble in basic medium
2. Precipitation • The precipitating reagent is added at a concentration that favors the formation of a "good" precipitate. • This may require low concentration, extensive heating (often described as "digestion"), or careful control of the pH. • The precipitate should • Be sufficiently insoluble • Have large crystals (Easier to filter large crystals) • Be free of contaminants
Precipitation process : • When solution of precipitating agent (AgNO3) added into testing solution (KCl) to form AgCl precipitate, 1) Supersaturation: the solution phase contains more dissolved salt than at equilibrium. The driving force will be for the system to approach equilibrium (saturation). 2) Nucleation : initial phase of precipitation. A min number of particle will gather together to form a nucleus of particle or precipitate (solid phase). Higher degree of supersaturation, the greater rate of nucleation Ag+Cl- Ag+Cl-Ag+Cl- Ag+Cl-Ag+Cl-Ag+Cl- Ag+Cl-Ag+Cl-Ag+Cl-
nucleation involves the formation of ion pairs and finally a group of ions formed. 3) Particle growth : particle enlargement process. Nucleus will grow by deposition of particles precipitate onto the nucleus and forming a crystal of a specific geometric shape. Von weimarn discover – the particle size of precipitates is inversely proportional to the relative supersaturation of the sol. during the precipitation process.
The von Weimarn Ratio • von Weimarn ratio = (Q – S) S • A measure of relative supersaturation or supersaturation ratio • The lower the better • If high, get excessive nucleation, lots of small crystals, large surface area • If low, get larger, fewer crystals, small surface area
S = solubility of precipitate at equilibrium • Keep it high with high temperatures, adjusting pH • Q = concentration of reagents before precipitation • Keep it low by using dilute solutions, stir mixture well, add reactants slowly • Can lower S later by cooling mixture after crystals have formed
3. Digestion of the Precipitate • Let precipitate stand in contact with mother liquor (the solution from which it was precipitated), usually at high temp • This process is called digestion, or Ostwaldripening. The small particles tend to dissolve and precipitate on the surfaces of the larger crystals • Digestion make larger crystals, reduce surface contamination, reduce crystals imperfection
4. Filtration • Sintered glass crucibles are used to filter the precipitates. • The crucibles first cleaned thoroughly and then subjected to the same regimen of heating and cooling as that required for the precipitate. • This process is repeated until constant mass has been achieved, that is, until consecutive weighing differ by 0.3 mg or less. chapter 2
5. Washing • Co precipitated impurities esp those on surface, removed by washing the precipitate • Wet precipitate with mother liquor and which will also be remove by washing • Need to add electrolyte to the wash liquid bcoz some precipitate cannot be wash with pure water, peptization occur. • Eg HNO3 for AgCl precipitate
6) Drying or ignition • To remove solvent and wash electrolytes • Done by heating at 110 to 120°C for 1 to 2 hrs. • Converts hygroscopic compound to non-hygroscopic compound • May used high temp if precipitate must be converted to a more suitable form before weighing • Eg MgNH4PO4 convert to pyrophosphate Mg2P2O7 by heating at 900°C.
7) Weighing • After the precipitate is allowed to cool (preferably in a desiccator to keep it from absorbing moisture), it is weighed (in the crucible). • Properly calibrated analytical balance • Good weighing technique
Organic Precipitates • Organic precipitating agents have the advantages of giving precipitates with very solubility in water and a favorable gravimetric factor. • Most of them are chelating agents that forms slightly insoluble, uncharged chelates with the metal ions.
Gravimetric Analysis: Weight Relationship • in gravimetric method – the analyte (solute) is converted to precipitate which is then weight • From the weight of the precipitate formed in a gravimetric analysis, we can calculate the weight of the analyte
Gravimetric factor (GF) = weight of analyte per unit weight of precipitate. Obtain from ratio of F Wt of the analyte per F Wt precipitate, multiplied by moles of analyte per mole of precipitate obtained from each mole of analyte GF = f wt analyte (g/mol) x a (mol analyte/mol precipitate) f wt precipitate (g/mol) b = g analyte / g precipitate
Example 1 If Cl2 in a sample is converted to chloride and precipitated as AgCl, the weight of Cl2 that gives 1g of AgCl is? F wt Cl = 35.453 F wt Ag = 107.868 GF = f wt analyte (g/mol) x a (mol analyte/mol precipitate) f wt precipitate (g/mol) b = g analyte / g precipitate
GF = f wt analyte (g/mol) x a (mol analyte/mol precipitate) f wt precipitate (g/mol) b = g analyte / g precipitate g Cl2 = g AgCl x f wt analyte (g/mol) x a f wt precipitate (g/mol) b = 1 AgCl x 70.906 g/mol x 1 mol 143.321 g/mol 2 mol = 0.2474 g
percent composition by weight of the analyte in the sample : % A = gA x 100% gsample gA – grams of analyte (the desired test substance) gsample – grams of sample taken for analysis
EXAMPLE 2 A 0.3516g sample of commercial phosphate detergent was ignited at a red heat to destroy the organic matter. The residue was then taken up in hot HCl which converted P to H3PO4. The phosphate was precipitated with Mg2+ followed by aqueous NH3 to form MgNH4PO4.6H2O. After being filtered and washed, the precipitate was converted to Mg2P2O7 (FW=222.57) by ignition at 100ºC. This residue weighed 0.2161g. Calculate the percent P (FW = 30.974) in the sample.
GF = f wt analyte (g/mol) x a (mol analyte/mol precipitate) f wt precipitate (g/mol) b = g analyte / g precipitate g P = 0.2161 g x 30.974 x 2 222.57 1 = 0.0601g % A = gA x 100% gsample = 0.0601 g x 100% 0.3516 g = 0.1709 %
EXAMPLE 3 Orthophosphate (PO43-) is determined by weighing as ammonium phosphomolybdate (NH4)PO4.12MoO3. Calculate the percent P and the percent P2O5 if 2.1771g precipitate (ppt) were obtained from a 0.3588g sample. [F wt P = 30.97], [F wt P.molybdate = 1876.5], [F wt P2O5 = 141.95]
g P = 2.1771g x 30.97 g/mol x 1 mol 1876.5 g/mol 1 mol = 0.0359g % P = 0.0359g x 100% 0.3588g = 10.01 %
g P2O5 = 2.1771 g x 141.95 g/mol x 1 mol 1876.5 g/mol 2 mol = 0.0823g % P2O5 = 0.0823g x 100% 0.3588g = 22.94%