1 / 29

Quantum-Mechanical Effects in Trigate SOI MOSFETs

This study investigates various quantum-mechanical effects in Trigate SOI MOSFETs, including dopant fluctuation, quantum confinement, intersubband scattering, and variation of threshold voltage.

edebose
Télécharger la présentation

Quantum-Mechanical Effects in Trigate SOI MOSFETs

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Problemas • Flutuação de Dopantes • Efeitos Quánticos • Variação do VTH • Intersubband scattering

  2. tsi Wsi Wsi=tsi=20 nm / FMS=0V / VG= 0.0V / VG2=0V / Na=5x1017 cm-3 / T=300K Electron concentration (Poisson) Electron concentration (Poisson+Schrödinger )

  3. tsi Wsi Wsi=tsi=20 nm / FMS=0V / VG= 1.5V / VG2=0V / Na=5x1017 cm-3 / T=300K Electron concentration (Poisson) Electron concentration (Poisson+Schrödinger )

  4. tsi Wsi Wsi=tsi= 5 nm / FMS=0V / VG=0.0V / VG2=0V / Na=5x1017 cm-3 / T=300K Electron concentration (Poisson+Schrödinger ) Electron concentration (Poisson)

  5. tsi Wsi Wsi=tsi= 5 nm / FMS=0V / VG=1.5V / VG2=0V / Na=5x1017 cm-3 / T=300K Electron concentration (Poisson) Electron concentration (Poisson+Schrödinger )

  6. 2D Simulation (Quantum) Electron concentration

  7. Problemas • Flutuação de Dopantes • Efeitos Quánticos • Variação do VTH • Intersubband scattering

  8. First (lowest) subband energy level and Threshold voltage "Quantum-Mechanical Effects in Trigate SOI MOSFETs", J.P. Colinge, J. C. Alderman , W. Xiong, and C. R. Cleavelin, IEEE Transactions on Electron Devices, Vol. 53, no 5, pp. 1131-1136, 2006

  9. Corrente de Dreno Poisson equation only (P) or Poisson+Schrödinger solver (P+S) "Quantum-Mechanical Effects in Trigate SOI MOSFETs", J.P. Colinge, J. C. Alderman , W. Xiong, and C. R. Cleavelin, IEEE Transactions on Electron Devices, Vol. 53, no 5, pp. 1131-1136, 2006

  10. Problemas • Flutuação de Dopantes • Efeitos Quánticos • Variação do VTH • Intersubband scattering

  11. Inter-Subband Scattering (2D GaAs)

  12. Efeitos Quánticos: Inter-subband scattering At low temperature

  13. Efeitos Quánticos: Inter-subband scattering At room temperature !

  14. Experimental Results FinFET/Tri-Gate Technology • 150nm Buried oxide • 65 nm top silicon layer thickness (HFIN) • gate dielectric = 2.3 nm HfSiON on 1 nm SiO2 • midgap metal gate: • 5 nm TiN layer + 100nm thick polysilicon capping • 1 x1015cm-3 channel concentration

  15. Threshold Voltage - MuGFET For MuGFETs Devices (*): Top gate Side gate The influence of side gates are considerably higher than the top gate for Wfin = 20 nm (almost double gate) Side gate *T. Poiroux et al., Microelectronics Engineering, 80, 378 (2005).

  16. Threshold Voltage - MuGFET For MuGFETs Devices (*): Workfunction difference Between the gate and silicon film *T. Poiroux et al., Microelectronics Engineering, 80, 378 (2005).

  17. Threshold Voltage - MuGFET For MuGFETs Devices: Potential f in the channel

  18. Threshold Voltage - MuGFET For MuGFETs Devices: variation of the minimum energy in the conduction band Confinement induced by the quantum well WFIN = 20 nm *T. Poiroux et al., Microelectronics Engineering, 80, 378 (2005).

  19. Threshold Voltage - MuGFET For MuGFETs Devices: Therefore the last term can be neglected due to the Wfin used in this study has 20 nm Confinement induced by the quantum well WFIN = 20 nm

  20. When WFin decreases Better control of the back channel by side walls gm ramp disappears WFin Vth [6] T. Poiroux et al., Micr. Eng., vol. 80, p. 378, 2005. WFin Sidewalls conduction gmmax reduction is due to the electron mobility degradation in sidewall (110) crystal orientation with respect to the (100) plane

  21. Triple-Gate nFET Strain Technology Strain gm,max Vth

  22. Devices Characteristics – TiN Thickness Study Metal Gate - TiN IMEC/Belgium: Gate dielectric : 1 nm SiO2 chemical oxide 2.3 nm MOCVD HfSiO toxb = 150nm Hfin = 65nm Na = 1x1015 cm-3 n type MuGFETs 10 fins Wfin = 2, 1, 0.5, 0.2, 0.17m Wfin,eff = Wfin - 0.13mm L = 10m Metal Gate – TiN 2nm (64 ALD cycles) 5nm (160 ALD cycles) 10nm (320 ALD cycles) *I. Ferain et al., ESSDERC, p. 202-205, 2008.

  23. TiN Thickness Influence on gm *Rodrigues M, Martino JA, Collaert N, Mercha A, Simoen E, Claeys C (2009)EuroSOI 2009 Back interface accumulated (Fully depleted) to see GIFBE VT increases Thinner TiN metal gate IG VT decreases VFB eWF Thinner TiN reduces slightly the onset of GIFBE

  24. Devices Characteristics – Gate Stack • n type MuGFETs • Wfin = 2m • 10 fins • L = 10m • toxb = 145nm • Hfin = 65nm • Na = 1x1015 cm-3 IMEC/Belgium: *VLSI Symp. Dig. Techn. Papers, p. 14 (2008)- IMEC process Poly-Si Poly-Si Poly-Si Poly-Si Poly-Si Poly-Si Poly-Si 3nm 4 nm 4 nm 5 nm PE-ALD TiN 1 nm TiN 1 nm 0.5 nm 5nm 2nm 1 nm 1 nm 0.5 nm Dy2O3 Cap Layer HfSiO HfSiO HfSiO HfSiO HfSiO HfSiO 2.3nm HfSiO HfSiO HfSiO SiO2 SiO2 SiO2 SiO2 SiO2 SiO2 SiO2 1 nm RTO (IL) SiO2 REF(1) (2) (3) (4) (5)

  25. Gate Stack Influence on gm (*) *Martino JA, et al (2009), SOI Symposium, ECS Transactions. VT (eWF) GIFBE (higher VGF) ( IG)

  26. FinFET/Tri-Gate Technology (High NA) (*) *Andrade MGC, Martino JA (2008), Solid-State Electronics, 52, 1877–1883.

  27. FinFET/Tri-Gate Technology (High NA) Higher NA - three peaks are observed. • VT,TC : Top Corners • VT,BC : Bottom Corners • VT,SG VT,TG :Sidewall and Top surfaces at the same time

  28. CONCLUSÕES Para seguir a Lei de Moore é necessário: • Uso de isolantes de porta com alta constante dielétrica e/ou uso de Múltiplas Portas (FinFET) • Incrementar a corrente (Silício tensionado, SiGe, Ge, Múltiplas Portas (FinFET)). • Modificar a estrutura do MOSFET para melhorar o acoplamento eletrostático: • MOS conv.SOI Múltiplas Portas (FinFET)

  29. Agradecimentos • Jean-Pierre Colinge • Alunos de Mestrado e Doutorado da EPUSP. • Colegas Professores e Doutores da USP, FEI e UNICAMP. • FAPESP: Projeto Temático • CNPq – INCT-NAMITEC : Prof. Jacobus Swart

More Related