1 / 9

Geometri monofilamen yang dipilin (twisted monofilament Asumsi:

Geometri monofilamen yang dipilin (twisted monofilament Asumsi: terdiri atas banyak serat filamen sejajar sumbu monofilamen (Y). Central point of iner filament Aouter layer filaments Neutral zone layer filaments Compression area and strain area No filament miration

eliza
Télécharger la présentation

Geometri monofilamen yang dipilin (twisted monofilament Asumsi:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Geometri monofilamen yang dipilin (twisted monofilament • Asumsi: • terdiri atas banyak serat filamen sejajar sumbu monofilamen (Y). • Central point of iner filament • Aouter layer filaments • Neutral zone layer filaments • Compression area and strain area • No filament miration • Monofilament volume constant through deformation

  2. twist Rn hn βn Δ L R0 h0

  3. Rn Rnt hn ln F kgf hnt lnt Twisted Twisted and strained

  4. A an Rn ln(β) αn n ln(α) βn ln() A’ 2πan 2πRn

  5. αnt hn hnt lnt() βnt lnt(α) 2πant 2πRnt After twisting and tensioning: α ln(ϴ) β ln(α) 2πan 2πRn

  6. Fibril length : Fibril strain : Stress in fibril

  7. F =  dF =  2 n ..rn drn.cos2 Rn 0 Tensional force in fibril axis: dW = 2 n ..rn drn.cos Fibril tensional force projection to monofilament axis: dF = dW cos  = 2 n ..rn drn.cos2 F =  dF =  2 n ..rn .drn.cos2 . Rn

  8. Tensional force in fibril axis: dW = 2 n..rnt.drnt.cosnt = 2 E.nt ..rnt drnt.cosnt Force projection to monofilament axis: d Fnt = d W.cosnt = 2 n..rnt.drnt.cos2nt = 2 E.nt ..rnt drnt.cos2n = E.2 {( secnt / secnt)( nt() + 1) – 1} rnt.cos2nt drnt 0 Fnt =  dFnt = E . nt().( hnt2 / 4).ln sec2.nt

  9. Stress in strained twisted monofilament (as the nominal stress) = Fnt / .Rn2 = (E . nt(). hnt2 .ln sec2.nt) / 4 .Rnt2 = (E . nt()).(nt2. ln ( 1 + nt-3 tan2nt) / tan2n = nt() . Fibril stress at neutral zone layer = (E . nt()).(nt2. ln ( 1 + nt-3 tan2nt) / tan2n

More Related