1 / 20

第10課:吸収線の形成

第10課:吸収線の形成. 平成17年1月17日. 講義のファイルは http://www.ioa.s.u-tokyo.ac.jp/kisohp/STAFF/nakada/intro-j.html に置いてあります。 質問は nakada@kiso.ioa.s.u-tokyo.ac.jp へ。. 最終授業は平成17年1月24日です。レポート提出が遅れる人は1月末日までに天文学教室事務室桜井敬子さんに届けて下さい。単位が欲しい人は5つ以上のレポートを提出して下さい。M2、B4で単位認定を急ぐ人は申し出て下さい。. 10.1.古典的双極子による吸収.

elle
Télécharger la présentation

第10課:吸収線の形成

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 第10課:吸収線の形成 平成17年1月17日 講義のファイルは http://www.ioa.s.u-tokyo.ac.jp/kisohp/STAFF/nakada/intro-j.html に置いてあります。 質問は nakada@kiso.ioa.s.u-tokyo.ac.jp へ。 最終授業は平成17年1月24日です。レポート提出が遅れる人は1月末日までに天文学教室事務室桜井敬子さんに届けて下さい。単位が欲しい人は5つ以上のレポートを提出して下さい。M2、B4で単位認定を急ぐ人は申し出て下さい。

  2. 10.1.古典的双極子による吸収 p p p 固有振動数νoを持つ双極子モーメントp=-qzが密度Nで散らばる媒質を考える。 この媒質の誘電率をεとすると、 εE=E + 4πNp=(1 + 4πNα)E である。 この媒質を振動数νの電磁波Eが伝わる時、電磁波に起こる変化を求めよう。   入射電磁は真空中(屈折率m=1)で   E=Eo exp( i2πνt – ikx)、 媒質(屈折率m=n-iκ)中で   E=Eo exp( i2πνt – imkx)                    = Eo exp( i2πνt – inkx-κkx) 媒質の屈折率mを求めることが重要である。 E=Eo exp( i2πνt – ikx) E=Eo exp( i2πνt – imkx) 電荷qの運動は、         mz”= -gz’ – Kz -qEo exp( iωt) γ=g/m, ωo 2=K/m, と置くと、    z” +γz’ +ωo 2z=-(qEo/m) exp( iωt)

  3.   固有振動数ωo 、抵抗係数γの振動子に強制振動ωを加えている。 z=A exp(iωt)とおいて、     (-ω2+iγω+ωo 2 ) A= -(qEo/m) -q 双極子モーメントp=-qz z q z=-(qEo/4π2m) exp( i2πνt)/(νo 2–ν2 +iγν/2π)  Ωω=2πν、ωo= 2πνoである。 ν=νoで共振がおき、振幅が大きくなる。 双極子モーメントp=-qzは   p=qz=(q2Eo/4π2m) exp( i2πνt)/(νo 2 –ν2 + iγν/2π) 従って、p=αE, (α=感受率 susceptibility) とおくと、 α=(q2/4π2m) /(νo 2 –ν2 + iγν/2π)

  4. 次に、双極子モーメントpが密度Nで存在する媒質の誘電率εを求める。次に、双極子モーメントpが密度Nで存在する媒質の誘電率εを求める。 εE=E + 4πNp=(1 + 4πNα)E ε=誘電率(dielectric constant) = 1+4πNα=1+4πN(q2/4π2m) /(νo 2 –ν2 + ν/2π) =1+(Nq2/πm) /(νo 2 –ν2 + iγν/2π) =1+(Nq2/πm) (νo 2 –ν2 -iγν/2π) /[(νo 2 –ν2 )2 +(γν/2π)2] 複素屈折率(complex refractivity)m=n-iκは、ε=(n-iκ)2なので n= 1+(Nq2/2πm)(νo 2 –ν2) /[(νo 2 –ν2 )2+(γ/2π)2ν2] (νo 2 –ν2)=2ν(νo –ν)の近似を入れて = 1+ (Nq2/4πmν)(νo –ν) /[(νo –ν)2+(γ/4π)2] =1+(Nq2/mνγ) [(νo –ν)/(γ/4π)] / {1+[(νo –ν)/(γ/4π)] 2} κ= (Nq2/2πm)ν(γ/2π) /[(νo2 –ν2 )2+(γ/2π)2ν2] = (Nq2/4πmν) (γ/4π) /[(νo –ν)2+(γ/4π)2] (同じ近似) = (Nq2/mνoγ) / {1+[(νo –ν)/(γ/4π)] 2}

  5. X -2(γ/4π) 0 2(γ/4π) (νo –ν) (Nq2/mνoγ) 媒体の 複素屈折率 m=n-iκ κ 0 n-1 E=Eo exp[ 2πi(νt – ikx)] E=Eo exp[ 2πi(νt – nkx+iκkx)] |E|2=Eo2 |E|2=Eo2exp( -4πκkx)

  6. D σ(ν)=双極子1個の吸収断面積 とすると、|E|2=Eo2 exp( -Nσ x) である。 前ページの|E|2=Eo2exp( -4πκkx)と比べると、 4πκ(ν)k(ν)=4πκ(ν)(ν/c)=Nσ(ν)  4π (ν/c)(Nq2/mνγ) / {1+[(νo –ν)/(γ/4π)] 2}=Nσ(ν)  σ(ν)=(q2/mc)(4π/γ) / {1+[(νo –ν)/(γ/4π)] 2} 量子力学的双極子による吸収断面積は σ(ν)=(q2/mc) f (4π/Γ) / {1+[(νo –ν)/(Γ/4bπ)] 2}        f=oscillator strength またはf-値( f-value) と呼ばれる。 [復習]κとσの関係 σ=吸収断面積( m2 )n=粒子の数密度 (m-3) N=nSD= S×Dの筒内粒子数 透かして見ると、Sの内不透明部分の面積X=Nσ = nSDσ 入射光線F=ISが距離Dを通過する間にX/Sが失われるから、 dI=-I(X/S)=-I(nSDσ) /S= I nσD=IκρD S

  7. 10.2.吸収線強度 σ(ν)=(q2/mc) f (4π/Γ) / {1+[(νo –ν)/(Γ/4π)] 2} の双極子がn個/cm3分布する媒質を考える。 厚みLの媒質を通過した光の吸収線は、   I´(λ) =I(λ)exp(-nLσ(ν)) I(λ) I(λ)-I´(λ)=I(λ)[1-exp(-nLσ(ν))] 弱吸収では、 [I(λ)-I´(λ)] / I(λ) = nLσ(ν) Fc 等値巾 (Equivalent Width)  W=∫ [I(λ)-I´(λ)] / I(λ) dλ 弱い吸収では上式より、    W= ∫nLσ(ν)dλ     =nL∫σ(ν)dλ  Fλ Wλ F=0 λ

  8.  吸収断面積の積分 σ(ν) a π ( )d = ( ) ∫σ ν ν σ ν f[2mc /(h /4 ) ] 3 2 γ π a 2 fc/ c 2 3 π α π λ =( q /mc)f 2 π o-2 /4 o- /4 o o+ /4 o+2 /4 ν γ π ν γ π ν ν γ π ν γ π 2 /4 γ π νo-2γ/4π νo-γ/4π νo νo+γ/4π νo+2γ/4π ∫σ(ν)dν=∫(q2/mc)f(4π/γ) / {1+[(νo –ν)/(γ/4π)] 2} dν =(q2/mc)f∫dx/(1+x2) = (πq2/mc)f 弱い吸収では、 W=nL∫σ(ν)dλ =nL∫σ(ν)dν(λ2/c) =nL(πq2/mc) (λ2/c) f (πq2/mc)=π 4.8032E-20/(9.109E-28 x 2.998E10)=2.654E-2 (cm2 sec) 吸収断面積σ(ν) (q2/mc)f(4π/γ) 積分値= (πq2/mc)f はγに依らない。 γ/2π

  9.  振動子強度の例 n=2 l=1 S=1/2 L=1 g=4 n=2 l=0 S=1/2 L=0 2P3/2 g=2 g=2 2P1/2 2S1/2 n=1 l=0 S=1/2 L=0 2S1/2 g=2 例1:Lα線 g (1s2S1/2) f(1s2S1/22p2P1/2)=0.2774, f(1s2S1/22p2P1/2) =0.1387 g (1s2S1/2) f(1s2S1/22p2P3/2)=0.5547, f(1s2S1/22p2P3/2) =0.2774 g (n=1) f(n=1n=2)=0.2774+0.5547=0.8321, f(n=1n=2) =0.4161 selection rules Δl=±1 ΔS=0、ΔL=0、±1、  ΔJ=0、±1   (J=0J=0、 L=0L=0を除く)

  10. g=6 g=4 g=4 3d2D5/2 g=2 3d2D3/2 3p2P3/2 g=2 3p2P1/2 3s2S1/2 2p2P3/2 2p2P1/2 2s2S1/2 g=4 g=2 g=2 例2:Hα レベル間遷移(ライン)のf-値 ターム間遷移(マルチプレット)のf-値 transition gLfLU gL fLU 2s2S1/23p2P1/2 0.2898 2 0.1449 2s2S1/23p2P3/2 0.5796 2 0.2898 2p2P1/23s2S1/2 0.02717 2 0.01359 2p2P3/23s2S1/2 0.05434 4 0.01359 2p2P1/23d2D3/2 1.391 2 0.696 2p2P3/23d2D3/2 0.2782 4 0.0696 2p2P3/23d2D5/2 2.504 4 0.626 transition gLfLU gL fLU 2s3p 0.8694 2 0.4347 2p3s 0.08151 6 0.01358 2p3d 4.1732 6 0.6955 Hα線のf-値 23 5.12411 8 0.6405

  11. 10.3 線形大気での吸収線形成 吸収線形成を簡単なモデルで考えるために、次のような沢山の仮定をする。 (1) 局所平衡(LTE)     Sλ(τR)=Bλ[T(τR)]          (τR=ロスランド光学深さ) (2) エディントンモデル T(τR)4=(3/4)Te4 ( τR+2/3)    (3) 線形大気     Sλ(τR)=Aλ+ Bλ・τλ 生憎、(1)と(3)は厳密には両立しない。そこで、(1)をτR=0のまわりで一次式で展開して近似的に(3)と考える。

  12. したがって、(3)において、 と見なせば、(3)を(1)と両立させうる。 第6課6-1節の例2で見たように、線形大気S(τ)=A+Bτの大気表面からのフラックスはF=π[A+B・(2/3)]=πS(τ=2/3)である。 したがって、 または、 この式から分かるように、Fλ=α+β/τλの形をしていて、 τλが大きい所ではFλが小さくなる。これが、吸収係数が大きい波長で吸収線が現れる原因である。

  13. もう少し物理的に考えると。 吸収係数が次の図のように、λ=λLで盛り上がっているとする。  λLでは吸収が強いので、浅いところでτL=2/3に達する。浅いためにそこの温度は低い。 κλ 浅いので温度が低く、フラックスが小さい。 深いので温度が高く、フラックスが大きい。 λL τR= 0.0  0.2 0.4 0.6 0.8 大気表面 τλ=2/3 λ

  14. 吸収係数と吸収スペクトルの関係をもう少し調べてみよう。吸収係数と吸収スペクトルの関係をもう少し調べてみよう。 λ= λLの付近で、κ= κC+κLとする。 κ(λ) κC λ λL に注意して、前々頁のFの式を書き直すと、

  15. 前頁の式を検討すると、まず、下から2行目に出てくる前頁の式を検討すると、まず、下から2行目に出てくる はλL付近での連続スペクトルとなっていることがわかる。 連続スペクトルの強さは、 κCとκRの強さの比で決まる。    κR< κC Fo<Fe=πB(Te)    κR> κC Fo>Fe=πB(Te) 次に下から2行目の最後の項 は、吸収線を表す。吸収が弱い(κL<κC)場合、吸収の深さがκLに比例することがわかる。 最後の行の

  16. は吸収が強い場合には、大気の表面(T=To)しか見通せないことを示している。は吸収が強い場合には、大気の表面(T=To)しか見通せないことを示している。 図示すると以下のようである。 弱いライン 大気表面T=To ライン波長で見通せる深さ 連続光波長で見通せる深さ 有効温度T=Teの深さ

  17. 強いライン 大気表面(T=To) ≒ ライン波長で見通せる深さ 連続光波長で見通せる深さ 有効温度T=Teの深さ ピュアな吸収の場合、強い吸収の極限はT=Toの大気表面からの輻射がスペクトルの底になる。

  18. 吸収線の強度につれての形の変化 Fc(λ) κLと共に深くなる F(λ) κLが非常に強いと吸収線の底が飽和する Fo(λ) λ

  19. 問題 10ーA           平成16年12月20日               提出 平成16年1月17日    問題9-AでやったA9型星の大気を考える。 (1) 波長λ=0.2,0.4,0.6,0.8,1.2,1.4,1.6,1.8,2.0,2.2,   2.4μmでの吸収係数k(λ)を使ってロスランド平均吸収係数kRを求めよ。   積分は階段積分でよい。 (2) 10-3節と同じモデルで、連続スペクトルを扱うと、  で、星表面のスペクトルが表現されることが分かる。ここでは、 であることに注意して、問題9-Aで求めたkλを使って横軸λ、縦軸Fλで、A9型星のスペクトルを描いてみよ。特にバルマー不連続の大きさに注意すること。

  20. 問題10-B   問題9-Bでやった内からスペクトル型を一つ選び、10-Aと同じ   問いにこたえよ。

More Related