1 / 35

Planificación de proyectos a coste mìnimo

T O X. Planificación de proyectos a coste mìnimo. Alexandre Rios Malvido. índice. Concepto de proyecto. 1. 2. Técnicas de planificación y control. 3. Planificación de proyectos a coste mínimo. Concepto Proyecto. 1.1 Introducción 1.2 El proyecto de ingeniería

elmo
Télécharger la présentation

Planificación de proyectos a coste mìnimo

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. T O X Planificación de proyectos a costemìnimo Alexandre Rios Malvido

  2. índice Concepto de proyecto 1 2 Técnicas de planificación y control 3 Planificación de proyectosa costemínimo

  3. Concepto Proyecto • 1.1 Introducción • 1.2 El proyecto de ingeniería • 1.3 La triple restricción • 1.4 Tipos de proyectos de ingeniería • 1.5 Fases de Proyecto • 1.6 La viabilidad del proyecto

  4. 1. CONCEPTO DE PROYECTO • ¿Quees el concepto de proyecto? • En el DRAE encontramos una serie de definiciones formales: • PROYECTO, TA. Del lat. proiectus. • - adj. Geom. Representado en perspectiva. • - m. Planta y disposición que se forma para la realización de un tratado, o para la ejecución de una cosa de importancia. • - Designio o pensamiento de ejecutar algo. • - Conjunto de escritos, cálculos y dibujos que se hacen para dar idea de cómo ha de ser y lo que ha de costar una obra de arquitectura o de ingeniería. • - Primer esquema o plan de cualquier trabajo que se hace a veces como prueba antes de darle la forma definitiva. • Aspectosfundamentales: • o Recursos combinados. • o Organización temporal de los recursos interdependientes. • o Objetivos temporales, cualitativos y cuantitativos. • “Combinación de recursos humanos y no humanos reunidos en una organización temporal para conseguir un propósito determinado”

  5. 1.2 El proyecto de ingeniería • ¿De dondenace la idea del desarrollo del proyecto? • El detonante del desarrollo de un proyectoessiempre la necesidad, pero solo es el origen. • ¿Entoncesque mas partescomponen al proyecto? • Las actividadesque van configurando el proyecto se divide en 4 actividades. • Toma de decisiones: Un correctoanalisisinfluira en la buenatoma de decisionespor parte de los implicados • Iteraciones: derivada de la toma de decisiones. • Compensaciónde recursos: recursoshumanos y no humanos • Afectaciónpor el entorno:adaptacion al entorno.

  6. 1.3 La triple restricción

  7. Clasificaciónsegunsumétodo y técnica Obracivil Electricidadxt Los principalestipos: Otros mecánicat informática 1.4 tipos de proyectos de ingeniería

  8. 1.5 Fases de un proyecto

  9. 1.5 Fases de un proyecto

  10. 1.6 Viabilidad del proyecto • El primer pasoparaanalizar un proyectoes el analisis de la viabilidad real del mismo. • ¿Quétenemosquetenerpresente? • Viabilidad técnica: Estimar la dificultad para poder realizar técnicamente el proyecto. • Viabilidad Social: Deberemos analizar si el proyecto tendrá una gran acogida o mas bien todo lo contrario. • Viabilidad económica: Determinar si los gastos e inversiones son tolerados por las necesidades a cubrir. • Viabilidad legal: Si el proyecto esta dentro del marco legal

  11. Yasabemosquees el concepto de proyecto, ¿ y ahora?

  12. 2. Técnicas de planificación y control de proyectos • 2.1 ¿Que son PertCpm? • 2.2 Aplicación de PertCpm • 2.3 Ventajas de estas técnicas • 2.4 Diferencias con el método Gantt • 2.5 Fundamentos básicos de representación grafica de un proyecto • 2.6 Tiempo de preparación y restricciones externas al proyecto • 2.7 flechas ficticias • 2.8 Computo de tiempo • 2.9 Concepto de camino crítico y holguras de tiempo • 2.10 Relación entre la duración y el coste directo de una actividad

  13. 2.1¿Qué son PertCpm? • Pert y CPM son dos métodos para la determinación de la ruta crítica de las actividades de un proyecto. Fueron diseñados para proporcionar elementos útiles de información para los administradores del proyecto.

  14. Aplicación de CpmPert ¿ PARA QUE SIRVE? • El método de la ruta crítica es un proceso administrativo de planeación, programación, ejecución y control de todas y cada una de lasa actividades componentes de un proyecto que debe desarrollarse dentro de un tiempo crítico y al costo óptimo. • Si deseamos que el proyecto se ejecute con prontitud, las actividades que corresponde ala ruta crítica deben ejecutarse

  15. 2.3 Ventajas de estas técnicas • Las principales ventajas de estas técnicas son el poder proporcionar a la dirección las siguientes informaciones: • a) ¿Qué trabajos serán necesarios primero y cuándo se deben realizar los acopios de materiales y problemas de financiación? • b) ¿Qué trabajos hay y cuántos serán requeridos en cada momento? • c) ¿Cuál es la situación del proyecto que está en marcha en relación con la fecha programada para su terminación? • d) ¿Cuáles son las actividades críticas que al retrasarse cualquiera de ellas, retrasan la duración del proyecto)? • e) ¿Cuáles son las actividades no críticas y cuánto tiempo de holgura se les permite si se demoran? • f) Si el proyecto está atrasado, ¿dónde se puede reforzar la marcha para contrarrestar la demora y qué coste produce? • g) ¿Cuál es la planificación y programación de un proyecto con coste total mínimo y duración óptima?

  16. 2.4 Diferencias con el método Ganntt • El método de PERT o CPM separa el proceso de planificación del proceso de programación. Este es el punto de diferencia con el método de GANTT. En el gráfico de GANTT se realiza la planificación y la programación al mismo tiempo, o sea que la longitud de la barra que representa cada tarea indica las unidades de tiempo. • EJEMPLO:

  17. 2.5 Fundamentos básicos de representación • La dirección de las flechas no tiene sentido vectorial. Es simplemente una progresión de tiempo. Como el tiempo no retrocede, la orientación de la flecha siempre es de izquierda a derecha. Una actividad debe estar terminada para que la subsiguiente pueda comenzar. Como todas las actividades tienen sus sucesos iniciales y finales, el suceso final de la actividad precedente es el mismo suceso inicial de la subsiguiente

  18. Ejemplo

  19. 2.6 tiempo y restricciones externas • Generalmente en los modelos de red para proyectos hay un tiempo de preparación antes de ejecutarlos. En este tiempo, se realiza una serie de actividades restrictivas, por ejemplo: petición de autorización, espera de la última decisión para el lanzamiento del proyecto, preparación de financiación, condiciones estacionales, etc. El tiempo de preparación se representa con una línea sinuosa ~~®con tiempo 0 de duración. Aplicándolo a nuestro ejemplo anterior será:

  20. 2.7 Flechas ficticias • En un diagrama de flechas, muchas veces existe una relación de precedencia entre dos actividades, pero no porque se requiera previamente ningún trabajo, ni recurso, ni tiempo, sino por circunstancias especiales. En estos casos para expresar la conexión de estas actividades se crea una flecha ficticia, representada con una línea punteada (- - - ->)

  21. 2.8 Cómputode tiempo • Cómputo de tiempo «lo más pronto posible» y «lo mástardepermisible» de comenzar y terminarunaactividad. • Hasta ahora podemos decir que hemos terminado la fase de planificación y entramos en la fase de programación. La programación consiste en estimar la duración de cada actividad. Esta estimación puede ser determinística o probabilística.

  22. CPM

  23. CPM

  24. Método Pert

  25. Método Pert

  26. 2.9 Concepto de caminocrítico y holguras de tiempo • En cualquier proyecto, algunas actividades son flexibles, respecto a cuándo se pueden comenzar o terminar; otras no son flexibles, de forma que si se demora cualquiera de ellas,seretrasará todo el proyecto. Estas actividades inflexibles se llaman criticas y la cadena de ellas forma un camino crítico. El camino critico es la duración más larga através del proyecto. Hay siempre por lo menos un camino crítico en cada proyecto, y muchas veces varios. • Las actividades incluidas en el camino critico suelen ser del 10% al 20% de los totales. Podemos definir el camino crítico como: "aquello en el cual las actividades no tienen holgura de tiempo para comenzar ni para terminar". Desde el punto de vista de la dirección es muy importante estrechar la vigilancia sobre las críticas, ya que al retrasarse cualquiera de ellas se retrasa todo el proyecto. • Asimismo, no se deben dejar de controlar las actividades no criticas, porque a pesar de que tengan holguras de tiempo o margen libre para la realización de la tarea, tanto para comenzar como para terminar tienen su limite. Si se pasa este límite, se convierten en críticas. Por esta razón es conveniente calcular la magnitud de estas holguras de tiempo. En CPM llaman a las holguras de tiempo tiempos flotantes. • Existen cuatro clases de tiempos flotantes: • a) Flotante total. • b) Flotante libre. • c) Flotante independiente. • d) Flotante programado.

  27. 2.10 Relación entre la duración y el coste directo de una actividad • Si queremos acelerar la marcha de alguna actividad para reducir la duración del proyecto, es evidente que ello ocasionará un aumento de coste directo y a su vez una disminución en el coste indirecto.

  28. 3 • Planificación de proyectos a coste mínimo.

  29. 3.1  Objetivo de la programación a coste mínimo • La pregunta inmediata que se puede plantear es: ¿Cuál es la duración optima del proyecto? • A la hora de definir un proyecto la duración de este es, junto con el coste y la calidad, uno de los factores importantes a tener en cuenta.  • Como la definición de una fecha exacta de terminación y el cumplimiento de esta resultan casi imposible, se suele proceder de la siguiente forma: • 1) Se define un intervalo de tiempo dentro del cual el proyecto deberá estar finalizado, a dicho intervalo le corresponde un precio, denominado precio base. • 2) Si el proyecto sobrepasa el intervalo anterior su precio se vera sometido a unas penalizaciones, representadas por la línea de penalizaciones. • 3) Si el proyecto finaliza con anterioridad al intervalo prefijado este goza de unos premios representados por la línea de premios.

  30. Ejemplo Representación superpuesta de la grafica de coste/duración y de la grafica de precio/duración

  31. 3.2 Relación entre duración y coste • Para ello considera que a cada actividad ij en que se descompone el proyecto le podemos asignar dos tiempos de ejecución distintos: el tiempo normal y el tiempo tope. A cada uno de estos tiempos les corresponde un tiempo de ejecución diferente. • Tij                Tiempo normal de ejecución de la actividad ij. Corresponde al nivel razonable de utilización de los recursos (Tiempo PERT). • CijT              Coste inherente a la ejecución de la actividad ij en el tiempo Tij (coste mínimo) • tij   Tiempo tope de ejecución de la actividad ij. Esta duración corresponde al nivel máximo de utilización de los recursos, es el tiempo mínimo de ejecución. • Xij                Duración de la actividad ij, que es la variable incógnita en el método MCE.

  32. Ejemplo • - A es el llamado punto normal, tiempo de ejecución máximo y coste mínimo. • - B es el llamado punto tope, tiempo de ejecución mínimo y coste máximo. • -       Los puntos A y B estarán unidos por una cierta curva  que constituye la llamada curva coste duración.

  33. Ejemplo • Dada la complejidad de la curva Cij como hipótesis de trabajo consideraremos que existe una proporcionalidad estricta entre las disminuciones de los tiempos de ejecución y los costes inherentes a estas reducciones. Esto permite abordar el problema de forma operativa, transformando el problema de la programación de proyectos a coste mínimo en un problema de programación lineal paramétrica. • Curvas coste-duración con la nueva hipótesis (líneas rectas)

  34. 3.3  Optimización de la duración de las diferentes actividades • Otra manera de plantear el problema del coste podría ser el de relacionar las duraciones de las actividades con los costes suplementarios inherentes a las correspondientes reducciones. En este caso la ordenada del punto A de la recta coste suplementario-duración sería cero, ya que para el tiempo normal de ejecución no se incurre en ningún sobrecoste adicional.. En cuanto a la ordenada del punto B de la recta coste suplementario-duración será igual al sobrecoste en que se incurre por reducir el tiempo de ejecución de la actividad ijdesde su tiempo máximo Tija su tiempo mínimo tij. Este coste suplementario Sijtse obtendría restando al coste máximo Cijtel coste mínimo CijT.

  35. Gracias por la atención! Alexandre Rios Malvido

More Related