1 / 8

证明举例复习( 1 )

证明举例复习( 1 ). —— 通过添加辅助线构造全等三角形证明相关的几何题. 新浜中学 杜 娟. A. 1. 2. B. C. D. 对书上 P93 例题 7 的再认识:. 已知:如图, DB ⊥ AB , DC ⊥ AC , 且∠ 1=∠2. 求证: AD ⊥ BC. 若已知改为: ∠ ABD=∠ACD ,且∠ 1=∠2 要证明的结论 :AD⊥BC 还成立么?. [ 例题 ] 已知:如图,在四边形 ABCD 中, BD 平分∠ ABC ,∠ A+∠C=180°, BC > BA.

elpida
Télécharger la présentation

证明举例复习( 1 )

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 证明举例复习(1) ——通过添加辅助线构造全等三角形证明相关的几何题 新浜中学 杜 娟

  2. A 1 2 B C D 对书上P93例题7的再认识: 已知:如图,DB⊥AB,DC⊥AC,且∠1=∠2. 求证:AD⊥BC. 若已知改为: ∠ABD=∠ACD,且∠1=∠2 要证明的结论:AD⊥BC 还成立么?

  3. [例题] 已知:如图,在四边形ABCD中,BD平分∠ABC,∠A+∠C=180°, BC>BA. 求证:AD=DC.

  4. ∵BD平分∠ABC(已知) ∴∠1=∠2(角平分线的意义) A D 在⊿ABD与⊿EBD中 BA=BE(已作) ∠1=∠2(已证) BD=BD(公共边) ∴ ⊿ABD ≌⊿EBD(S.A.S) 1 2 B C E 解题过程: 在BC上截取BE=AB,联结DE ∴AD=DE(全等三角形的对应边相等) ∠A=∠BED(全等三角形的对应角相等) ∵ ∠A+∠C=180°(已知)∠BED+∠DEC=180°(平角的意义) ∴∠DEC= ∠C(等角的补角相等) ∴DE=DC(等角对等边) ∴AD=DC(等量代换)

  5. [试一试] 已知:如图,在△ABC中,AD平分∠BAC,∠B=2∠C。 求证:AC=AB+BD.

  6. D C A E B C [课堂练习] 已知:如图,∠A=1000,∠ABC=400 , BD平分∠ABC,DE=DA。 求证:BC=AB+CE

  7. 谈谈你的体会和收获!

  8. 谢谢!

More Related