1 / 46

High Precision Experiments with Cold and Ultra-Cold Neutrons

High Precision Experiments with Cold and Ultra-Cold Neutrons. q Bounce : Spectroscopy of Gravity. |3 > 3.32 peV. a, A, B, C. |1 > 1.4 peV. Hartmut Abele Vienna, 1 December 2012. Show Case I: Test of Gravitation at Short Distances with Quantum I nterference.

emmy
Télécharger la présentation

High Precision Experiments with Cold and Ultra-Cold Neutrons

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. High Precision Experiments with Cold and Ultra-Cold Neutrons qBounce: Spectroscopy of Gravity |3 > 3.32 peV a, A, B, C |1 > 1.4 peV Hartmut Abele Vienna, 1 December 2012

  2. Show Case I: Test of Gravitation at Short Distances with Quantum Interference Julio Gea-Banacloche, Am. J. Phys.1999 Quantum interference: sensitivity to fifth forces Height, 40 µm Time Simulation: Reiter, Schlederer, Seppi Hartmut Abele, Atominstitut, TU Wien Rafael Reiter, Bernhard Schlederer, David Sepp

  3. Nature Physics, 1 June 2011 Key Technique: Gravity ResonanceSpectroscopy |3 > 3.32 peV |1 > 1.4 peV • atomicclocks • nuclearmagneticresonancespectroscopy • spin echo technique • quantummetrology • gammaresonancespectroscopy • Test Newton‘slawatshortdistances: • String Theories • Dark Matter • Dark Energy Hartmut Abele, Atominstitut, TU Wien High Precision - Low Energy

  4. Rabi-Gravity-Spectroscopy a 2-level systemcanbeconsideredas a Spin ½ - System |3 > 3.32 peV |1 > 1.4 peV • QS: V.N., H.A. et al., • Nature 2002 Vibratingmirror AlternatingMagneticgradientfields

  5. Side-band excitation • Gähler, Felber, Golub et al.

  6. The kickedrotor • M. Bienert, F. Haug and W. P. Schleich, Raizen

  7. Outline • Gravity ResonanceSpectroscopy • Quantum states in thegravity potential oftheearthandcoherencesuperposition • Search fordeviationsfrom Newtons gravitylawatshortdistances • Large extra dimensions • Dark matter particles • Dark energy • Tests ofweakinteractionwithneutron beta-decayexperiments • Experiment PERC • Scientific Programme for ESS /Broadoverviewofthefield

  8. Neutron sources • Spallation Source • Reactorsource

  9. Neutron Production Fission: 2 MeV Thermal: 25meV, 300K Cold: 4 meV, 40K 10-7 ultra cold: 100 neV, 1mK Gravity Experiment: 1 pico-eV Velocity v [m/s]

  10. The future: FRM2, ESS

  11. Tool: Ultra-ColdNeutrons • Strong Interaction: V ~ 100 neV • KineticEnergy: < 100 neV • 3m/s < v < 20m/s • Magnetism, Zeeman splitting : 120 neV/T • Energy in theearth‘sgravitationalfield: • E = mgh 100neV/m

  12. ? Quantum Bounce Cold-Source at 40 K • System Neutron & Earth • Neutron bound in thegravity potential oftheearth • <r> = 6 µm • Groundstateenergyof1.4 peV • 1 dim. • SchrödingerEqu. • AiryFunctions • Hydrogen Atom • Electronbound in proton potential • Bohr radius <r> = 1 A • Groundstateenergyof13 eV • 3 dim. • SchrödingerEqu. • Legrendre Polynomials Hartmut Abele, Technische Universität München Hartmut Abele 13 13

  13. Gravity and Quantum Mechanics Schrödingerequation: Solutions: Airy-functions: Ai & Bi boundaryconditions: with 2nd mirroratheight V [peV]

  14. Show Case I: Rabi-type Spectroscopy of Gravity Resonance Spectroscopy Technique to explore gravity T. Jenke, SPP1491-Treffen 2012, Frauenchiemsee

  15. State Selection by a rough neutron mirror • 4.5 days of beam time • 3600 events(background subtracted) rough mirror track detector UCN neutron mirror • fit: • free parameters: • result: T. Jenke, ÖPG 2012

  16. Horizontal velocity • 6 m/s < vx < 7.2 m/s T. Jenke, Diplomathesis, 2008

  17. Frequency Reference for Gravitation • Based on naturalconstants: • Massoftheneutronm • Planck constantħ • Accelerationofearthg • Based on 2 naturalconstants: • Massoftheneutronm • Planck constantħ Plus Accelerationofearthg |3 > 3.32 peV |1 > 1.4 peV

  18. Discoveries: thedarkuniverse • Spectroscopyof Gravity • Itdoesnot useelectromagneticforces • Itdoesnot usecouplingtoem Potential • Hyotheticalgravity-likeforces • Axions? • Chameleons? • constraint on any possible new interaction Axion 10-14 eV Scale

  19. Felicitas Pauss

  20. The cosmological Parameters

  21. Neutrons test Newton • Strengtha • Range l • Hypothetical Gravity LikeForces • Extra Dimensions: • The string and Dp-brane theories predict the existence of extra space-time dimensions • Infinite-Volume Extra Dimensions: Randall and Sundrum • Exchange Forces from new Bosons: a deviation from the ISL can be induced by the exchange of new (pseudo)scalar and (pseudo)vector bosons • Axion - - - - - - - - - - - - - - - - - - - → 0.2 µm <  < 0.2 cm • Scalar boson. Cosmological consideration • Bosons from Hidden SupersymmetricSectors • Gauge fields in thebulk (ADD, PRD 1999) - - - - →106 <  < 109 • Supersymmetric large Extra Dimensions (B.& C.) - - - - →  < 106 • Chameleonfields-

  22. Show Case: Rabi-type Spectroscopy of Gravity Resonance Spectroscopy Technique to explore gravity Rabi-type experiment: Rabi-type experiment with damping • realization of gravity resonance • method possible • simple setup, no steps • high(er) transmission • upper mirror introduces • 2nd boundarycondition T. Jenke, SPP1491-Treffen 2012, Frauenchiemsee

  23. Gravity Resonance Spectroscopy 2012 50 days of beam time, 116 measurements [data 2010] • stat. Significance: • stat. accuracy: • contrast: T. Jenke, Dissertation (TU Wien, 2011) T. Jenke et.al., arXiv:1208.3875 (2012) 10-14 eV Scale T. Jenke, ÖPG 2012

  24. AXION: PDG Exclusion Ranges

  25. PDG Exclusion Ranges on Axionmasses ← ←

  26. Applications I: Spin-dependant short-ranged interactions J.E. Moody, F. Wilczek, Phys. Rev. D30, 131-138 (1984) discovery potential [Setup 2010]: 3 days of beamtime T. Jenke et.al., arXiv:1208.3875 (2012) T. Jenke, ÖPG 2012

  27. Dark Energy – Scalar Fields • Chameleonfields, Brax et al. PRD 70, 123518 (2004) • 2 Parameters , n

  28. qBounceandChameleons • Mirrorsat z ~ ± d/2 • Fit tonumericalsolution

  29. qBounceandChameleons • Bounds on coupling • Bycomparingtransitionfrequencywiththeoreticalexpectation: • as long as  > 105 • Cite as: arXiv:1207.0419v1

  30. Applications II: Strongly coupled chameleons A.N. Ivanov et.al., arXiv:1207.0419 (2012) T. Jenke et.al., arXiv:1208.3875 (2012) T. Jenke, ÖPG 2012

  31. Feedback from FUNDAMENTAL PHYSICS • Convener: T. Soldner, O. Zimmer, H. Abele

  32. Dark Energy – Scalar Fields • Chameleonfields, Brax et al. PRD 70, 123518 (2004) • 2 Parameters , n

  33. Casimir Force Atom Neutron: Casimir force absent Polarizabilityextremelysmall: • ExampleRb r = 1 Micron

  34. Grand Challenges • Sensitive toanyforce • Dark energysearch • chameleonfields • Dark matter search • Large extra dimensions • Hypotheticalgravitylikeforces

  35. DFG/FWF Priority Programme 1491 • ParticipatingInstitutions: • IST Braunschweig • Univ. Heidelberg • ILL • Univ. Jena • Univ. Mainz • Priority Areas • CP-symmetry violation and particle physics in the early universe. • The structure and nature of weak interaction and possible extensions of the Standard Model. • Tests of gravitation with quantum objects • Charge quantization and the electric neutrality of the neutron. • New Infrastructure (UCN-Source, cold Neutrons) • * Coordinators (S. Paul, H.A. ) • Exzellenzcluster ‚Universe‘ München • Techn. Univ. München* • PTB Berlin • Vienna University of Technology*

  36. Priority Programme 1491 • Research Area A: CP-symmetry violation and particle physics in the early universe • Neutron EDM E = 10-23eV • Research Area B: The structure and nature of weak interaction and possible extensions of the Standard Model • Neutron b-decayV – A Theory • Research Area C: Relation between gravitation and quantum theory • Neutron boundgravitationalquantumstates • Research Area D: Charge quantization and the electric neutrality of the neutron • Neutron charge • Research Area E: New measuring techniques • Particle detection • Magnetometry • Neutron optics

  37. Neutron Alphabet deciphersthe SM Parameters Strength: GF Quark mixing: Vud Ratio:  = gA/gV A Neutron Spin  Electron B Neutrino C Proton Observables • Lifetime  • Correlation A • Correlation B • Correlation C • Correlation a • Correlation D • Correlation N • Correlation Q • Correlation R • Beta Spectrum • Proton Spectrum • Polarized Spectra • Beta Helicity a D Q R R N High Precision - Low Energy

  38. Key Instrument: PERC A clean, bright and versatile source of neutron decay products Univ.Heidelberg & TU Wien, Mainz, ILL,FRM2,TU Munich • High Flux :  = 2 x 1010 cm-2s-1 •  Decay rate of 1 MHz / metre • Polarizer: 99.7 ± 0.1 % • Spin Flipper: 100.05 ± 0.1 % • Analyzer: 100 % 3He-cells B. Maerkisch talk Berlin 2012 Chopper Polarizer Analyzingarea Decay Volume, 8m Spin flipper n-guide + solenoid: field B0 polarized, monochromatic n-pulse Beam stop solenoid, field B2 p+ + e− window-frame p+ + e− beam n + γ-beam stop solenoid, field B1 v- selector

  39. Origin of nature’s lefthandedness Standard Model: Elektroweak interaction 100% lefthanded Grand unified theories: Universe was left-right symmetric at the beginning Parity violation = 'emergent' Order parameter <100% Neutron decay: Correlation B + A: Mass right handed W-Boson: mR > 280 GeV/c2 Phase: -0.20 < < 0.07 WL WR 41

  40. Grand Challenges • Sensitive toanytheorybeyondthe Standard Model • LeftRightSymmetry • Supersymmetry • Tensor orscalarinteractions • GUT

  41. Priority Programme 1491 • Research Area A: CP-symmetry violation and particle physics in the early universe • Neutron EDM • Research Area B: The structure and nature of weak interaction and possible extensions of the Standard Model • Neutron b-decay • Research Area C: Relation between gravitation and quantum theory • Neutron boundgravitationalquantumstates • Research Area D: Charge quantization and the electric neutrality of the neutron • Neutron charge • Research Area E: New measuring techniques • Particle detection • Magnetometry • Neutron optics

  42. The Future: Ramsey-Method

  43. Charge quantization and the electric neutrality of the neutron. • Sincethe Standard Model value for qn requires extreme fine tuning, the smallness of this value may be considered as a hint for GUTs, where qn is equal to zero. • Improve limit by two orders of magnitude

  44. qBounceSummary • Progress Report with Galileo in Quantum Land • qBounce: firstdemonstrationofthequantumbouncing ball • Dynamics: time evolutionofcoherentsuperpositionofAiry-eigenfunctions • Realizationof Gravity ResonanceSpectroscopy: • Coherent Rabi-Transitions, • |1> |2> • |1> |3>, see Nature Physics, 1 June 2011 • |2>  |3>, |2>  |4> • New Tool for • A Searchfor a deviationfromNewton‘s Law atshortdistances, wherepolarizabilityeffectsareextremelysmall , see H.A. et al., PRD 81, 065019 (2010) [arXiv:0907.5447 ] • A quantumtestoftheequivalenceprinciple • Directlimits on axioncoupling / chameleonsatshortdistances,

More Related