1 / 60

Metamaterials - Concept and Applications

Metamaterials - Concept and Applications. March 2006. Dr V esna Crnojevi ć -Bengin F aculty of Technical Sciences University of Novi Sad. Overview. Microwave passive circuits Metamateri als Definition Examples LH metamateri als Ide a Phenomena Realization LH microstrip structures

erzsebet
Télécharger la présentation

Metamaterials - Concept and Applications

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Metamaterials - Concept and Applications March 2006 Dr Vesna Crnojević-Bengin Faculty of Technical Sciences University of Novi Sad

  2. Overview • Microwave passive circuits • Metamaterials • Definition • Examples • LHmetamaterials • Idea • Phenomena • Realization • LHmicrostrip structures • Resonant and non-resonant structures • Applications

  3. Microwave Passive Circuits Rationale

  4. Problem • DimensionsPerformances • End-coupled ms resonator: • Antennas: narrow beam with only one source element? • Classical theory: large source • Metamaterials: ENZ substrate

  5. Metamaterials Characteristics Definition Types Examples

  6. Material Characteristics • Rel. permitivityεr • Rel. permeabilityμr • Rel. index of refraction • Rel. characteristic impedance

  7. Extreme values ofεrandμr • Metamaterials: • EVL – Epsilon Very Large • ENZ – Epsilon Near Zero • MVL – Mu Very Large • MNZ – Mu Near Zero • MENZ – Mu and Epsilon Near Zero • HIMP – High Impedance • LIMP – Low Impedance • HIND – High Index • LIND – Low Index μr εr

  8. Definition Metamaterials are artificial structures that exhibit extreme values of effectiveεr i μr.

  9. Metamaterials Do Not Exist • Artificial materials • Periodic structures • Period much smaller thenλ  Homogenization of the structure  Effective values of εrandμr

  10. Examples of Metamaterials

  11. Left-Handed MM First Ideas Development Realization Applications

  12. Other Quadrants? • Single-negative MM:εr<0 orμr<0 μr evanescent mode (plasma,metals@THz) propagation mode (isotropic dielectrics) εr evanescent mode (ferrites)

  13. Veselago’s Intuition • Double-negative MM:εr<0 andμr<0 ? μr evanescent mode (plasma,metals@THz) propagation mode (isotropic dielectrics) εr ? evanescent mode (ferrites)

  14. Conditions of Existence • No law of physics prevents the existence of DN MM • Generalized entropy conditions for dispersive media must be satisfied ()

  15. Veselago’s Conclusions • Propagation constant βis real &negative Propagation mode exists  Antiparalel group and phase velocities Backward propagation (Left-hand rule)  Negative index of refraction

  16. Synonyms • Double-Negative (DN) • Left-Handed (LH) • Negative Refraction Index (NRI) • (Metamaterials)

  17. Left-Handed Metamaterials • Double-negative MM: εr<0 andμr<0 μr evanescent mode (plasma,metals@THz) propagation mode (isotropic dielectrics) εr propagation mode (Left-Handed MM) evanescent mode (ferrites)

  18. Consequences of LH MM • Phenomena of classical physics are reversed : • Doppler effect • Vavilov-Čerenkov radiation • Snell’s law • Lensing effect • Goss-Henchen’seffect

  19. Snell’s Law !!!

  20. But Alas... Everything so far was “what if”... Can single- or double-negative materials really be made?

  21. First SN MM – J. B. Pendry εr<0 - 1996. μr<0 - 1999.

  22. Why is r negative? • Plasmons – phenomena ofexcitation in metals • Resonance of electron gas (plasma) • Plasmon produces a dielectric functionof the form: • Typically, fpis in the UV-range • Pendry: fp=8.2GHz

  23. Why is μr negative?

  24. Experimental Validation • Smith, Shultz, et al. 2000.

  25. LH MS Structures Resonant and non-resonant structures Applications

  26. Resonant LH Structures • Split Ring Resonator (SRR) Very narrow LH-range Small attenuation • Many applications, papers, patents • Super-compact ultra-wideband (narrowband) band pass filters • Ferran Martin,Univ. Autonoma de Barcelona

  27. Wide Stopband Garcia-Garcia et al,IEEE Trans. MTT, juni 2005.

  28. Complementary SRR • Application of Babinet principle - 2004. • CSRR givesε‹0

  29. LH BPF – CSRR/ Gap • November 2004. • Gaps contribute toμ‹0 • Low attenuation in the right stopband

  30. BPF – CSRR/Stub • August 2005. • 90% BW • Not LH!!!

  31. Three “Elements” • CSRR/Gap– steep left side • CSRR/Stub – steep right side • 2% BW

  32. Multiple SRRsandSpirals Crnojević-Bengin et al, 2006.

  33. Fractal SRRs Crnojević-Bengin et al, 2006.

  34. Non-Resonant LH Structures • June 2002. • Eleftheriades • Caloz & Itoh • Oliner • Transmission Line (TL) approach • Novel characteristics: • Wide LH-range • Decreased losses

  35. Conventional (RH) TL • Microstrip

  36. LH TL • Dual structure

  37. A Very Simple Proof • Analogy between solutions of the Maxwell’s equations for homogenous media and waves propagating on an LH TL Materials:LH TL: = !!!

  38. Microstrip Implementation • Unit cell

  39. Dispersion Diagrams RH TL LH TL

  40. Is This Structure Purely LH? • Unit cell

  41. CRLH TL • Real case – RH contribution always exists

  42. LH TL Characteristics • Wide LH-range Caloz, Itoh, IEEE AP-S i USNC/URSI Meeting, juni 2002.

  43. 2-D LH Metamaterials

  44. Applications of LH MM • Guided wave applications • Filters • Radiated wave applications • Antennas • Refracted wave applications • Lenses

  45. Guided Wave Applications • Dual-bandand enhanced-bandwidth components • Couplers, phaseshifters, power dividers, mixers) • Arbitrary coupling-levelimpedance/phase couplers • Multilayer super-compactstructures • Zeroth-order resonatorswith constant field distribution Lai, Caloz, Itoh, IEEE Microwave Magazin, sept. 2004.

  46. Dual-Band CRLH Devices • Second operating frequency: • Odd-harmonic - conventional dual-band devices • Arbitrary - dual-band systems • Phase-response curve of the CRLHTL : • DC offset – additionaldegree of freedom  Arbitrary pair of frequenciesfor dual-band operation • Applications: Phaseshifters, matching networks, baluns, etc.

  47. Dual-Band BLC Lin, Caloz, Itoh, IMS’03. • Conventional BLC operates atfand3f • RH TL replaced by CRLH TL  arbitrary second passband

  48. CµS/CRLH DCCaloz, Itoh, MWCL, 2004. • Conventional DC:  broad bandwidth(>25%)  loose coupling levels(<-10dB) • CRLH DC:  53% bandwidth  coupling level −0.7dB

  49. ZOR Sanada, Caloz, Itoh, APMC 2003. • Operates atβ=0 • Resonance independentof the length • Q-factor independent of the number of unit cells

  50. SSSRCrnojević-Bengin, 2005. • LZOR=λ/5 • LSSSR=λ/16 • Easier fabrication • More robust to small changes of dimensions

More Related