1 / 11

Ⅰ 도 형

Ⅰ 도 형. 4. 도형의 이동. 2) 대칭이동. ( Symmetric transformation ). ▷ 점의 평행이동. ☞ g : (x, y) → (x + a, y + b ). ▷ 도형의 평행이동. ☞ f( x, y ) = 0 → f(x – a, y – b) = 0. 점의 대칭이동. X 축 , f : (x , y) → (x, -y). y 축 , f : (x , y) → (-x, y). 원점 , f : (x , y) → (-x, -y).

eve
Télécharger la présentation

Ⅰ 도 형

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ⅰ 도 형 4. 도형의 이동 2) 대칭이동 (Symmetric transformation)

  2. ▷ 점의 평행이동 ☞ g : (x, y) → (x + a, y + b) ▷ 도형의 평행이동 ☞ f( x, y ) = 0 → f(x – a, y – b) = 0

  3. 점의 대칭이동 X 축 , f : (x , y) → (x, -y) y 축 , f : (x , y) → (-x, y) 원점 , f : (x , y) → (-x, -y)

  4. 점 (4, 5)를 x축, y축, 원점에 대하여 대칭시켜 보라구~~~

  5. 도형의 대칭이동??? 함 볼까?

  6. 도형의 대칭이동 X 축 , f (x , y) = 0 → f (x, -y) = 0 y 축 , f (x , y) = 0 → f (-x, y) = 0 원점 , f (x , y) = 0 → f (-x, -y) = 0

  7. [문제] 원 을 원점에 대하여 대칭이동 하면 직선 3x + 2y + k = 0 에 의하여 넓이가 이등분 될 때, 상수 k값을 구하면?

More Related