1 / 21

D 0 D 0 Mixing and CP Violation Results from the B Factories

D 0 D 0 Mixing and CP Violation Results from the B Factories. Brian Meadows, Bostjan Golob, Ikaros Bigi. Outline from 1 st Meeting. i. Theory 1. Brief history 2. Mixing 3. CPV 4. NP ii. General Exp. Remarks 1. D* tagging 2. Decay-t resolution iii. Decays to CP eigenstates

eve
Télécharger la présentation

D 0 D 0 Mixing and CP Violation Results from the B Factories

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. D0D0 Mixing and CP Violation Results from the B Factories Brian Meadows, Bostjan Golob, Ikaros Bigi

  2. Outline from 1st Meeting • i. Theory • 1. Brief history • 2. Mixing • 3. CPV • 4. NP • ii. General Exp. Remarks • 1. D* tagging • 2. Decay-t resolution • iii. Decays to CP eigenstates • 1. Method • 2. Results KK/pipi • 3. Results Ksphi + others • iv. Hadronic WS decays • 1. Formalism • 2. Results Kpi • v. t-dependent Dalitz • 1. Kpipi0 • 2. Ks h h • 3. Other multibody • vi. Semileptonic • 1. General remarks • 2. comparison of results tagged/un-tagged • vii. t-integrated CPV measurements • 1. Using data to measure eff. asymmetry • 2. Results KK/pipi • 3. Multi-body (KKpi0, pipipi0, KKpipi) • 4. T-odd correlations • viii. t-dependent CPV measurements • ix. Summary

  3. Next Level • i. Theory • 1. Brief history • 2. Mixing • 3. CPV • 4. NP • ii. General Exp. Remarks • 1. D* tagging • 2. Decay-t resolution • iii. Decays to CP eigenstates • 1. Method • 2. Results KK/pipi • 3. Results Ksphi + others • iv. Hadronic WS decays • 1. Formalism • 2. Results Kpi • v. t-dependent Dalitz • 1. Kpipi0 • 2. Ks h h • 3. Other multibody • vi. Semileptonic • 1. General remarks • 2. comparison of results tagged/un-tagged • vii. t-integrated CPV measurements • 1. Using data to measure eff. asymmetry • 2. Results KK/pipi • 3. Multi-body (KKpi0, pipipi0, KKpipi) • 4. T-odd correlations • viii. t-dependent CPV measurements • ix. Summary

  4. Theory (and Formalism) • i. Theory • 1. Brief history • Invention of charm (GIM mechanism) • Pais and Treiman, 1975 • Short range -> x is small • Long range (Wolfenstein) • Compare w/other neutral systems • Uniqueness of charm • 2. Mixing • Definitions (x, y, q/p, phi,  and all that) • Decays to state accessible to D0 or D0 • dN/dt ~ e- t x [r2 + r(y cos+x sin)t + (x2+y2)t2] - (1) Point out that this is how most mixing measurements are made • 3. CPV • Mixing, Decay and Interference • Define f • 4. NP • Best outlined by theorist !

  5. Next Level • i. Theory • 1. Brief history • 2. Mixing • 3. CPV • 4. NP • ii. General Exp. Remarks • 1. D* tagging • 2. Decay-t resolution • iii. Decays to CP eigenstates • 1. Method • 2. Results KK/pipi • 3. Results Ksphi + others • iv. Hadronic WS decays • 1. Formalism • 2. Results Kpi • v. t-dependent Dalitz • 1. Kpipi0 • 2. Ks h h • 3. Other multibody • vi. Semileptonic • 1. General remarks • 2. comparison of results tagged/un-tagged • vii. t-integrated CPV measurements • 1. Using data to measure eff. asymmetry • 2. Results KK/pipi • 3. Multi-body (KKpi0, pipipi0, KKpipi) • 4. T-odd correlations • viii. t-dependent CPV measurements • ix. Summary

  6. General Exp. Remarks • ii. General Experimental Remarks • 1. D* Tagging • Usual “cartoon” showing vertices and vertex resolution • Figures illustrating M, M for varous channels • 2. Decay Time Resolution • Resolution for • K • Ks+- and variation over Dalitz plot + Belle equivalent?

  7. Next Level • i. Theory • 1. Brief history • 2. Mixing • 3. CPV • 4. NP • ii. General Exp. Remarks • 1. D* tagging • 2. Decay-t resolution • iii. Decays to CP eigenstates • 1. Method • 2. Results KK/pipi • 3. Results Ksphi + others • iv. Hadronic WS decays • 1. Formalism • 2. Results Kpi • v. t-dependent Dalitz • 1. Kpipi0 • 2. Ks h h • 3. Other multibody • vi. Semileptonic • 1. General remarks • 2. comparison of results tagged/un-tagged • vii. t-integrated CPV measurements • 1. Using data to measure eff. asymmetry • 2. Results KK/pipi • 3. Multi-body (KKpi0, pipipi0, KKpipi) • 4. T-odd correlations • viii. t-dependent CPV measurements • ix. Summary

  8. Decays to CP eigenstates • iii. Decays to CP eigenstates • 1. Method • Decay not truly exponential but nearly so - relate to (1) • 2. Results KK/pipi • Definitions of A and Y and what they measure • Compare D*-tagged with untagged results • 3. Results Ksphi + others • Outline method and results • Comment on D0 +-0 (dominated by I=0  CP=+1)

  9. Next Level • i. Theory • 1. Brief history • 2. Mixing • 3. CPV • 4. NP • ii. General Exp. Remarks • 1. D* tagging • 2. Decay-t resolution • iii. Decays to CP eigenstates • 1. Method • 2. Results KK/pipi • 3. Results Ksphi + others • iv. Hadronic WS decays • 1. Formalism • 2. Results Kpi • v. t-dependent Dalitz • 1. Kpipi0 • 2. Ks h h • 3. Other multibody • vi. Semileptonic • 1. General remarks • 2. comparison of results tagged/un-tagged • vii. t-integrated CPV measurements • 1. Using data to measure eff. asymmetry • 2. Results KK/pipi • 3. Multi-body (KKpi0, pipipi0, KKpipi) • 4. T-odd correlations • viii. t-dependent CPV measurements • ix. Summary

  10. Hadronic WS decays • iv. Hadronic WS decays • Formalism • IMHO, this should be covered in i. theory – refer to Eq. (1) • Eq. (1) applies to decays to CP eigenstates and to time-dependent Dalitz plots too. • 2. Results Kpi • Describe results obtained • Include some discussion on the confidence level contour plots • [Project the 68.3% contour onto (x,y) plane ?]

  11. Next Level • i. Theory • 1. Brief history • 2. Mixing • 3. CPV • 4. NP • ii. General Exp. Remarks • 1. D* tagging • 2. Decay-t resolution • iii. Decays to CP eigenstates • 1. Method • 2. Results KK/pipi • 3. Results Ksphi + others • iv. Hadronic WS decays • 1. Formalism • 2. Results Kpi • v. t-dependent Dalitz • 1. Kpipi0 • 2. Ks h h • 3. Other multibody • vi. Semileptonic • 1. General remarks • 2. comparison of results tagged/un-tagged • vii. t-integrated CPV measurements • 1. Using data to measure eff. asymmetry • 2. Results KK/pipi • 3. Multi-body (KKpi0, pipipi0, KKpipi) • 4. T-odd correlations • viii. t-dependent CPV measurements • ix. Summary

  12. t-dependent Dalitz • t-dependent Dalitz • Point out that each “bin” (coordinates (s1,s2)in Dalitz plot is analogous to WS K decay – refer to Eq. (1) • t-dependence for each bin determined by local “r(s1,s2)” and “(s1,s2)” values • An amplitude model can provide both, but not the overall phase difference 0 between D0 and D0 decays to that point. • Kpipi0 • 0 is “unknown” (though recently measured by CLEO) • Outline results (only Babar so far). • 2. Ks h h • Method pioneered by CLEO (9 fb-1 ) • 0=0 since self-conjugate final state is sum of CP=+/-1 eigenstates • Outline results • Discuss Belle extraction of CPV parameters • 3. Other multibody • Describe Babar phase-space averaged preliminary results • No amplitude models so far.

  13. Next Level • i. Theory • 1. Brief history • 2. Mixing • 3. CPV • 4. NP • ii. General Exp. Remarks • 1. D* tagging • 2. Decay-t resolution • iii. Decays to CP eigenstates • 1. Method • 2. Results KK/pipi • 3. Results Ksphi + others • iv. Hadronic WS decays • 1. Formalism • 2. Results Kpi • v. t-dependent Dalitz • 1. Kpipi0 • 2. Ks h h • 3. Other multibody • vi. Semileptonic • 1. General remarks • 2. comparison of results tagged/un-tagged • vii. t-integrated CPV measurements • 1. Using data to measure eff. asymmetry • 2. Results KK/pipi • 3. Multi-body (KKpi0, pipipi0, KKpipi) • 4. T-odd correlations • viii. t-dependent CPV measurements • ix. Summary

  14. Mixing from WS Semileptonic Decays • vi. Semileptonic • General remarks • Time-dependence is ~ (x2+y2) t2 e- t – refer to Eq. (1) • RM=(x2+y2)/2~ 5 x 10-5 [x very small, y ~ 0.01] • Too small to have been observed so far. Backgrounds need to be kept under control Missing neutrinos make life difficult D* tagging essential • 2. comparison of results tagged/un-tagged • Belle chose a D*-tagged sample  Large RS signal and background of ~5000 events Babar chose a double tagged sample • Small RS signal but low background ~ 3 events Results are relatively comparable

  15. Next Level • i. Theory • 1. Brief history • 2. Mixing • 3. CPV • 4. NP • ii. General Exp. Remarks • 1. D* tagging • 2. Decay-t resolution • iii. Decays to CP eigenstates • 1. Method • 2. Results KK/pipi • 3. Results Ksphi + others • iv. Hadronic WS decays • 1. Formalism • 2. Results Kpi • v. t-dependent Dalitz • 1. Kpipi0 • 2. Ks h h • 3. Other multibody • vi. Semileptonic • 1. General remarks • 2. comparison of results tagged/un-tagged • vii. t-integrated CPV measurements • 1. Using data to measure eff. asymmetry • 2. Results KK/pipi • 3. Multi-body (KKpi0, pipipi0, KKpipi) • 4. T-odd correlations • viii. t-dependent CPV measurements • ix. Summary

  16. t-integrated CPV measurements • vii. t-integrated CPV measurements • Using data to measure eff. Asymmetry • Describe - D*/D ratio same for both charges of s • Point out that this means results should improve with higher luminosity. • Results KK/pipi • Add new D(s)+ Ks+(K+) results from Belle • Multi-body (KKpi0, pipipi0, KKpipi) • Point out that CPV probably occurs in some channels but not others • Model-dependent vs Model-independent approaches • Normalization to total in phase space (Dalitz) plot. • T-odd correlations • Describe • New results from Babar on K+K-+-

  17. Next Level • i. Theory • 1. Brief history • 2. Mixing • 3. CPV • 4. NP • ii. General Exp. Remarks • 1. D* tagging • 2. Decay-t resolution • iii. Decays to CP eigenstates • 1. Method • 2. Results KK/pipi • 3. Results Ksphi + others • iv. Hadronic WS decays • 1. Formalism • 2. Results Kpi • v. t-dependent Dalitz • 1. Kpipi0 • 2. Ks h h • 3. Other multibody • vi. Semileptonic • 1. General remarks • 2. comparison of results tagged/un-tagged • vii. t-integrated CPV measurements • 1. Using data to measure eff. asymmetry • 2. Results KK/pipi • 3. Multi-body (KKpi0, pipipi0, KKpipi) • 4. T-odd correlations • viii. t-dependent CPV measurements • ix. Summary

  18. t-dependent CPV measurements • viii. t-dependent CPV measurements • Belle time-dependent analysis of Ks+- Dalitz plot • Any other ??

  19. Next Level • i. Theory • 1. Brief history • 2. Mixing • 3. CPV • 4. NP • ii. General Exp. Remarks • 1. D* tagging • 2. Decay-t resolution • iii. Decays to CP eigenstates • 1. Method • 2. Results KK/pipi • 3. Results Ksphi + others • iv. Hadronic WS decays • 1. Formalism • 2. Results Kpi • v. t-dependent Dalitz • 1. Kpipi0 • 2. Ks h h • 3. Other multibody • vi. Semileptonic • 1. General remarks • 2. comparison of results tagged/un-tagged • vii. t-integrated CPV measurements • 1. Using data to measure eff. asymmetry • 2. Results KK/pipi • 3. Multi-body (KKpi0, pipipi0, KKpipi) • 4. T-odd correlations • viii. t-dependent CPV measurements • ix. Summary

  20. Summary • Summary • Make average(s) for Babar and Belle • Either as a group or individually ? • Compare one with the other ? • Given that a principal group of readers is to consist of new students and postdocs working on future flavour experiments, make a projection of our results to these experiments.

  21. Summary of Measurements - Babar

More Related