1 / 12

Solving Systems of Linear Equations for Economists

Learn to solve systems of linear equations in matrix form using Gaussian method, Cramer's rule, and Matrix Inverse. Practical examples provided.

fauna
Télécharger la présentation

Solving Systems of Linear Equations for Economists

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Matemática Básica para Economistas MA99 Tema: Sistema de Ecuaciones Lineales - Forma Matricial UNIDAD 4 Clase 7.1

  2. Objetivos • Presentar un S.E.L. en forma matricial. • Resolver un S.E.L. con matrices, a través del método de Gauss (matriz escalonada) • Resolver un S.E.L. con la Regla de Cramer. • Resolver un S.E.L. con el uso de la Matriz Inversa. pag.: 268 - 291

  3. RESOLUCIÓN DE UN S.E.L. POR EL MÉTODO DE GAUSS En resumen: 1.- El sistema es compatible solamente si rango [A:B] = rango [A] 2.- Si rango [A:B] = rango [A] = n (número de incógnitas), entonces el sistema tiene solución única. 3.- Si rango [A:B] = rango [A] = r < n, entonces el sistema tiene infinitas soluciones. En este caso se eligen n-r variables libres (parámetros) 4.- El sistema es incompatible solamente si rango [A:B] ≠ rango [A]

  4. RESOLUCIÓN DE UN S.E.L. CON LA REGLA DE CRAMER Si Anxn.Xnx1= Bnx1es un sistema de n ecuaciones con n incógnitas tal que |A| ≠ 0, entonces cada variable se calcula mediante: Ai representa a la matriz obtenida a partir de A, sustituyendo la columna i de A por la columna B de los términos independientes.

  5. RESOLUCIÓN DE UN S.E.L. CON LA REGLA DE CRAMER Ejemplo: Resuelva el siguiente sistema utilizando la regla de Cramer.

  6. RESOLUCIÓN DE UN S.E.L. CON EL MÉTODO DE LA INVERSA DE UNA MATRIZ Si Anxn.Xnx1 = Bnx1 es un sistema de n ecuaciones con n incógnitas tal que |A| ≠ 0, entonces el sistema tiene solución única determinada mediante: A-1(AX) = A-1B (A-1A)X = A-1B X = A-1B Es decir, calculando la matriz inversa de A y multiplicándola por la matriz B.

  7. OJO Recordar que los métodos de la Regla de Cramer y de la Matriz Inversa sólo pueden utilizarse cuando el sistema es determinado y además cuando el número de ecuaciones es igual al número de incógnitas.

  8. Problema Una estudiante determinó que tiene suficiente tiempo disponible para asistir a 24 eventos especiales durante el año escolar. Entre los eventos están conciertos, juegos de hockey y producciones teatrales. Ella siente que un balance ideal se alcanzaría se fuera el doble de veces a conciertos que a juegos de hockey, y si el número de conciertos a los que asistiera fuera igual al promedio del número de juegos de hockey y el número de obras de teatro. Utilice la Regla de Cramer para determinar el número de juegos de hockey a los que asistirá para alcanzar este balance ideal. Ejercicio 6.8 – Problema 21 (página 291)

  9. Problema Un grupo de inversionistas desea invertir $500,000 en las acciones de tres compañías. La compañía D vende en $60 una acción y tiene un rendimiento esperado de 16% anual. La compañía E vende en $80 cada acción y tiene un rendimiento esperado de 12% anual. La compañía F vende cada acción en $30 y tiene un rendimiento esperado de 9% anual. El grupo planea comprar cuatro veces más acciones de la compañía F que de la compañía E. Si la meta del grupo es 13.68% de rendimiento anual, ¿cuántas acciones de cada compañía deben comprar los inversionistas? Ejercicio 6.8 – Problema 21 (página 291)

  10. Problema Inversiones. Una persona invierte $20 000 en bonos, acciones y en prestamos personales a una tasa del 12%, 16% y 20% anual respectivamente. El rendimiento anual total fue de $3248 y el rendimiento de la inversión al 20% fue 2 veces el rendimiento de la inversión al 12%. ¿De cuánto fue cada inversión?

  11. Problema Producción. Un empresario tiene tres máquinas que son empleadas en la fabricación de cuatro productos diferentes. Para utilizar plenamente las máquinas, estas estarán en operación 8 horas diarias. El número de horas que cada máquina es usada en la producción de una unidad de cada uno de los cuatro productos está dada por: Producto MáquinaI II III IV 1 1 2 1 2 2 2 0 1 1 3 1 2 3 0 Encuentre el número de unidades que se deben producir de cada uno de los cuatro productos en un día de 8 horas, bajo el supuesto de que cada máquina se usa las ocho horas completas, que al menos se requiere producir una unidad de cada producto.

  12. Ejercicios Realizar los ejercicios siguientes página 261-262: 11,22,23,29 y 31. Página 290-291: 9,13,15 y 21.

More Related