400 likes | 605 Vues
Behavioral Modeling of Power Amplifier using DNN and RNN. Zhang Chuan. 1. 2. 3. DNN and RNN Modeling using new transistor. Next Work. Review. Outline. 1. Review. Review. Power amplifier. Memory effect. Short-term memory effect Long-term memory effect. Neural Network Modeling.
E N D
Behavioral Modeling of Power Amplifier using DNN and RNN Zhang Chuan
1 2 3 DNN and RNN Modeling using new transistor Next Work Review Outline
1 Review Review
Memory effect • Short-term memory effect • Long-term memory effect
Neural Network Modeling Long-term memory effect Vout Vin Vin Vin_L Vout Vout_L
Long-term memory effect example Neural Network Modeling Vin Vin_L Vout_L Vout
Neural Network Modeling Short-term DNN structure
Neural Network Modeling Long-term DNN structure
Short-term RNN structure Vout(t-2τ) Vout(t-τ) Vin(t-τ) Vin(t-2τ)
Long-term RNN structure Vout_L(t-Τ) Vout_L(t-Τ) Vout(t-τ) Vout_L(t) Vin_L(t) Vin(t-τ) Τ=nτ
Short-term DNN vs RNN RNN delay unit: both 2 harmonics: 3 hidden neurons: 30 training data: Pin:0~24 dBm step:2dBm freq: 850~900 MHz step: 5MHz test data: Pin: 1~23 dBm step: 2dBm freq: 852.5~897.5 MHz step:5MHz training error: FFNN : 0.019% RNN : 0.1133% test error: FFNN : 0.0159% RNN : 0.125% DNN derivative unit: both 2 harmonics: 3 hidden neurons: 30 training data: Pin:0~24 dBm step:2dBm freq: 850~900 MHz step: 5MHz test data: Pin: 1~23 dBm step: 2dBm freq: 852.5~897.5 MHz step:5MHz training error: Time-domain : 0.0174% Freq-domain : 0.9246% test error: Time-domain : 0.018% Freq-domain : 1.1514%
Long-term DNN vs RNN DNN derivative unit: Vin:2 Vin_L:2 Vout_L:2 Iin:1 Vout:2 harmonics: both 5 hidden neurons: 55 training data: Pin: 0~6 dBm step:2dBm fspacing: 5~50 MHz step: 5MHz test data: Pin: 1~5 dBm step: 2dBm freq: 7.5~47.5 MHz step:5MHz training error: Time-domain : 0.0449% Freq-domain : 1.7352% test error: Time-domain : 0.2653% Freq-domain : 2.1134% RNN delay unit: Vin:2 Vin_L:2 Vout_L:2 Iin:1 Vout:2 harmonics: both 5 hidden neurons: 55 training data: Pin: 0~6 dBm step:2dBm fspacing: 5~50 MHz step: 5MHz test data: Pin: 1~5 dBm step: 2dBm freq: 7.5~47.5 MHz step:5MHz training error: FFNN : 0.0363% RNN : 0.0627% test error: FFNN : 0.0418% RNN : 0.0782%
2 DNN and RNN Modeling using new transistor
Short-term comparison (DNN vs RNN) RNN derivative unit: 3 3 2 harmonics: 5 hidden neurons: 30 training data: Pin:0~32 dBm step:2dBm freq: 2.6~2.65 GHz step: 10MHz test data: Pin: 1~31 dBm step: 2dBm freq: 2.605~2.645 MHz step:10MHz training error: FFNN : 0.0472% RNN : 0.0113% test error: FFNN : 0.0291% RNN : 0.0335% DNN derivative unit: 3 3 2 harmonics: 5 hidden neurons: 30 training data: Pin:0~32 dBm step:2dBm freq: 2.6~2.65 GHz step: 10MHz test data: Pin: 1~31 dBm step: 2dBm freq: 2.605~2.645 MHz step:10MHz training error: Time-domain : 0.0057% Freq-domain : 0.8436% test error: Time-domain : 0.0062% Freq-domain : 0.9514%
Long-term DNN vs RNN DNN derivative unit: Vin:2 Vin_L:2 Vout_L:2 Iin:1 Vout:2 harmonics: both 5 hidden neurons: 40 training data: Pin: 16~22 dBm step:2dBm fspacing: 150~370 MHz step: 20MHz test data: Pin: 17~21 dBm step: 2dBm fspacing: 160~360 MHz step:20MHz training error: Time-domain : 0.0337% Freq-domain : 1.3751% test error: Time-domain : 0.1253% Freq-domain : 2.6134% RNN derivative unit: Vin:2 Vin_L:2 Vout_L:2 Iin:1 Vout:2 harmonics: both 5 hidden neurons: 40 training data: Pin: 16~22 dBm step:2dBm fspacing: 150~370 MHz step: 20MHz test data: Pin: 17~21 dBm step: 2dBm fspacing: 160~360 MHz step:20MHz training error: FFNN : 0.0036% RNN : 0.0534% test error: FFNN : 0.0048% RNN : 0.0626%
Long-term DNN vs RNN DNN derivative unit: Vin:2 Vin_L:2 Vout_L:2 Iin:1 Vout:2 harmonics: both 5 hidden neurons: 25 training data: Pin: 16~18 dBm step:2dBm fspacing: 150~370 MHz step: 30MHz test data: Pin: 17 dBm fspacing: 160~340 MHz step:30MHz RNN derivative unit: Vin:2 Vin_L:2 Vout_L:2 Iin:1 Vout:2 harmonics: both 5 hidden neurons: 25 training data: Pin: 16~18 dBm step:2dBm fspacing: 150~370 MHz step: 30MHz test data: Pin: 17 dBm fspacing: 160~340 MHz step:30MHz
3 Next Work
Next work I’ll figure out: Long-term memory effects modeling, choose a precise size of data and reduced DNN and RNN structure to get a good result.