Download
ontologies for food and agriculture ofa un fao aos prototype n.
Skip this Video
Loading SlideShow in 5 Seconds..
Ontologies for Food and Agriculture ( OFA ) UN FAO AOS Prototype PowerPoint Presentation
Download Presentation
Ontologies for Food and Agriculture ( OFA ) UN FAO AOS Prototype

Ontologies for Food and Agriculture ( OFA ) UN FAO AOS Prototype

123 Vues Download Presentation
Télécharger la présentation

Ontologies for Food and Agriculture ( OFA ) UN FAO AOS Prototype

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Ontologies for Food and Agriculture (OFA) UN FAO AOS Prototype Raphael Volz Forschungzentrum Informatik (FZI) Universität Karlsruhe Germany volz@fzi.de

  2. Goal The OFA project as a “sub project” of the overall Agricultural Ontology Server project provides a first step towards developing and using ontologies for the food and agricultural domain having the Semantic Web architecture in mind.

  3. Steps • Development of an Animal Feed Ontology on the basis of AGROVOC • Transfer of Knowledge with respect to Semantic Web Technology and Software • Common Development of a Multilingual Ontology Development and Maintenance Tool

  4. Step 1 - Animal Feed Ontology • Convert AGROVOC into RDF-Schema • Extract an Animal Feed Module from AGROVOC-RDFS using ontology pruning techniques • Refine Animal Feed Module with further ontological relations • Present the Animal Feed Module in an ontology-driven user interface

  5. Ontology Web Interface

  6. Step 2 - Knowledge Transfer • Ontology Tutorial • Tool Tutorial • Given by FZI member to FAO staff • Details to be arranged • Freely available online documentation

  7. Step 3 - Multilingual Ontology Tools • Multilingual Web-based presentation(Extension of KAON Portal) • Multilingual Ontology Editor(Extension of KAON SOEP) • Capability to display non-latin character sets

  8. Ontology Editor

  9. Master Thesis • Master thesis on „Multi-lingual document retrieval“ carried out by Boris Lauser • Objective: Apply text mining techniques to provide automatic classification of documents to the ontology • Possible Benefits: • Guide Thesaurus/ontology extension • Simplify document categorization • Improve search & retrieval

  10. Thank you ! Please direct your questions toRaphael Volz(volz@fzi.de)