1 / 18

Chemistry 1011

Chemistry 1011. TOPIC Rate of Reaction TEXT REFERENCE Masterton and Hurley Chapter 11. Reviewing Rates of Reaction. Reaction rates are affected by: reactant concentrations, temperature, catalysts, physical state of reactants Rate of reaction must be determined by experiment

fharris
Télécharger la présentation

Chemistry 1011

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chemistry 1011 TOPIC Rate of Reaction TEXT REFERENCE Masterton and Hurley Chapter 11 Chemistry 1011 Slot 5

  2. Reviewing Rates of Reaction • Reaction rates are affected by: • reactant concentrations, • temperature, • catalysts, • physical state of reactants • Rate of reaction must be determined by experiment • Relation between the rate and the concentrations of reactants is the • rate law expression Chemistry 1011 Slot 5

  3. Reviewing Rates of Reaction • If aA + bB  xX • Then rate = k[A]m [B]n • k is the rate constant • exponents m and n are the order of reaction with respect to A and B • overall order of reaction is m + n • Collision theory postulates an energy barrier, the activation energy • Transition state theory postulates the formation of an activated complex Chemistry 1011 Slot 5

  4. Reviewing Rates of Reaction • Catalysts alter the rate of reaction without being consumed • The Arrhenius equation is derived from collision theory and links the rate constant to the activation energy k = Ae-Ea/RT • Reaction mechanisms are developed to explain experimental results. • They consist of a number of elementary steps. • The slowest step is the rate determining step • This step determines the overall rate of reaction Chemistry 1011 Slot 5

  5. Review - Reaction Mechanisms YOU ARE EXPECTED TO BE ABLE TO: • Define reaction mechanism and show how the reaction order is dependent upon the mechanism by which a reaction takes place. • For a reaction taking place in more than one step, identify the rate determining step and identify reaction intermediates. • Determine if a proposed reaction mechanism is consistent with experimental rate data. Chemistry 1011 Slot 5

  6. Review – Reaction Mechanism • A reaction mechanism is a suggested path or sequence of steps by which a reaction occurs • The suggested mechanism must explain the experimental determined rate law expression and order of reaction • The individual steps that make up a reaction pathway are called elementary steps • For elementary reactions, the rate law can be determined from the equation Chemistry 1011 Slot 5

  7. Reaction of CO(g) with NO2(g) CO(g) +NO2(g)  NO(g) + CO2(g) • At low temperatures, the experimentally determined rate law expression is: Rate = k [NO2]2 • A two step reaction mechanism is suggested Step 1 SLOW NO2(g) +NO2(g)  NO3(g) +NO(g) Step 2 FAST CO(g) +NO3(g)  CO2(g) +NO2(g) CO(g) +NO2(g)  NO(g) + CO2(g) Chemistry 1011 Slot 5

  8. Reaction of CO(g) with NO2(g) • For the elementary step #1: NO2(g) +NO2(g)  NO3(g) +NO(g) • The rate law is: Rate = k1[NO2]2 • For the elementary step #2: CO(g) +NO3(g)  CO2(g) +NO2(g) • The rate law is: Rate = k2[CO][NO3] Chemistry 1011 Slot 5

  9. Reaction of CO(g) with NO2(g) • In this mechanism, SLOW step #1 is the rate determining step Step 1 SLOW: NO2(g) +NO2(g)  NO3(g) +NO(g) • The rate law expression for this step is Rate = k1[NO2]2 • This is the rate law predicted for the overall reaction by the proposed mechanism • This is consistent with experiment Chemistry 1011 Slot 5

  10. Review - Mechanism with a Fast Initial Step • Sometimes the first step in a reaction mechanism, which results in the creation of a reaction intermediate, will be FAST, and the second step, where the reaction intermediate is a reactant, may be SLOW • The rate determining step will be the second step • The rate law expression should then include the concentration of the reaction intermediate, but this cannot be measured • The final rate law expression can only include species occurring in the balanced equation Chemistry 1011 Slot 5

  11. Reaction of NO with Cl2 Step 1: NO(g) + Cl2(g)NOCl2(g)FAST Step 2: NOCl2(g) + NO(g) 2NOCl(g)SLOW Overall: 2 NO(g) + Cl2(g) 2NOCl(g) • Rate of overall reaction = rate of step 2 Rate = k2[NOCl2][NO] • The first (fast) elementary step in the reaction is reversible; The reactants and products are in equilibrium rate forward = rate reverse Chemistry 1011 Slot 5

  12. Reaction of NO with Cl2 • For the first (fast) elementary step: rate forward = rate reverse k1[NO][Cl2] =k-1[NOCl2] [NOCl2] = k1[NO][Cl2] k-1 Substitute in overall rate law expression Rate of reaction = rate of step 2 = k2[NOCl2][NO] Rate = k2k1 [NO]2[Cl2] = kexp [NO]2[Cl2] k-1 Chemistry 1011 Slot 5

  13. Limitations of Mechanism Studies • Mechanisms are suggested in order to explain observed rate laws and orders of reaction • Often more than one mechanism can explain experimental results Chemistry 1011 Slot 5

  14. Review Problem #1 • Hydrogen peroxide decomposes: 2H2O2(aq) 2H2O(l) + O2(g) • Initial rate data: [H2O2] Initial Rate (mol/L.min) 0.200 1.04 x 10-4 0.300 1.55 x 10-4 0.500 2.59 x 10-4 • Determine the order of reaction • Write the rate law expression • Calculate the rate constant, k Chemistry 1011 Slot 5

  15. Review Problem #2 • Two mechanisms are proposed for the reaction: 2NO(g) + O2(g)  2NO2(g) Mechanism #1: NO + O2 NO3 (fast) NO3 + NO  2NO2 (slow) Mechanism #2: NO + NO N2O2 (fast) N2O2 + O2  2NO2 (slow) Show that each is consistent with the rate law: Rate = k[NO]2[O2] Chemistry 1011 Slot 5

  16. Review Problem #2 • Mechanism #1 NO + O2 NO3 (fast) NO3 + NO  2NO2 (slow) • Step 2 is rate determining Rate2 = k2 [NO3][NO] • But NO3 is an intermediate • The reactants and products in Step 1 are in equilibrium • rate forward = rate reverse k1[NO][O2] = k-1[NO3] • Substitute for [NO3] in rate law expression Rate2 = Rate overall = k2.k1/k-1[NO][O2][NO] Rate = k[NO]2[O2] Chemistry 1011 Slot 5

  17. Review Problem #2 • Mechanism #2 NO + NO N2O2 (fast) N2O2 + O2  2NO2 (slow) • Step 2 is rate determining Rate2 = k2 [N2O2][O2] • But N2O2 is an intermediate • The reactants and products in Step 1 are in equilibrium • rate forward = rate reverse k1[NO][NO] = k-1[N2O2] • Substitute for [N2O2] in rate law expression Rate2 = Rate overall = k2.k1/k-1[NO][NO][O2] Rate = k[NO]2[O2] Chemistry 1011 Slot 5

  18. Review Problem #3 • Hydrogen peroxide in basic solution oxidizes iodide ions to iodine • The proposed mechanism for the reaction is: Step 1 (SLOW): H2O2(aq) + I-(aq) HOI(aq) + OH-(aq) Step 2 (FAST): HOI(aq) + I-(aq) I2(aq) +OH-(aq) • Write the overall equation • H2O2(aq) + 2I-(aq) I2(aq)+OH-(aq) • Write an expression for the overall rate law • Rate = k [H2O2][I-] Chemistry 1011 Slot 5

More Related