1 / 25

Neutrino-Nucleus Reactions and Nucleosynthesis

Neutrino-Nucleus Reactions and Nucleosynthesis. Toshio Suzuki Nihon University. Roles of ν-process in nucleosynthesis 核物理から見た宇宙 New Era of Nuclear Physics in The Cosmos RIKEN Sept. 25, 2008. Roles of ν-processes in nucleosynthesis Production of elements:

fritzi
Télécharger la présentation

Neutrino-Nucleus Reactions and Nucleosynthesis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Neutrino-Nucleus Reactions and Nucleosynthesis ToshioSuzuki Nihon University Roles of ν-process in nucleosynthesis 核物理から見た宇宙 New Era of Nuclear Physics in The Cosmos RIKEN Sept. 25, 2008

  2. Roles of ν-processes in nucleosynthesis Production of elements: 7Li, 11B, 19F, 26Al …51V Rare elements 138La, 180Ta Woosley et al, Astrophy.J 356 (1990) Heger et al., PL B606 (2005) Haxton Heger et al.

  3. Nucleosynthesis through neutrino-induced reactions ・Production of rare elements by ν- reactions GT exp.RCNP (3He, t) More GT strength than RPA (Heger et al.) Byelikov et al., PRL 98 (2007) Calculation by Heger et al. ・Role of νin r-process nucleosynthesis N=82, 126 regions Withν-induced n emission →solar abundances Qian, Haxton, Langanke, Vogel,PR C55 (1997)

  4. Research subjects • Reaction rates: better evaluations • ν-nucleus reaction cross sections • BR to n, p, γ, αemission channnels • (2) ν-oscillation effects • (3) Find possible new processes • ex. νp process Frohlich et al, PRL 96 (2006) • 64Ge(n,p) → • nucleosynthesis of A>64 nuclei • 92,94Mo, 96,98Ru • otherwise flow stops at 64Ge • (beta halif life=64s)

  5. New evaluation of reaction rates in p-shell and fp-shell nuclei • ν-12C, ν-4He reactions evaluated by new shell model Hamiltonians (SFO)   ・Synthesis of 7Li, 11B in supernovae  ・Oscillation effects • GT strength in 56Ni, 58Ni and Ni isotopes evaluated by GXPF1 ・ν-56Ni reaction and synthesis of55Mn in Pop. III star ・n emission from n-rich Ni isotopes

  6. Light Element Abundances and Nucleosynthesis Processes Inner O/C He/C He/H H

  7. Supernovae νSpectra σ∝ E2 <E> & tail part

  8. Neutrino-inducedReactions charged-current neutral-current Spin-dependent excitations ● Gamow-Teller (1+): ● Spin-diole (0-, 1-, 2-):

  9. Cross sections for Supernova Neutrinos with temperature T SFO: good description of magnetic moments, GT in p-shell nucelei Suzuki, Fujimoto, Otsuka, PRC (2003) p and n emissionsBR: Hauser-Feshbach model

  10. Cross sections for Supernova Neutrinos with temperature T S. Chiba SFO

  11. ν- 4He reaction cross sections cf. Woosley-Haxton: Sussex potential by Elliott et al.

  12. Abundances of 7Li and 11B produced in supernova explosion processes M=16.2 M☼ (SN 1987A) No oscillation case Cf. Yoshida, Suzuki, Chibaet al., Astrophys. J (2008)

  13. mix mix no mix mix no mix no mix SN Nucleosynthesis with Neutrino Oscillations Supernova nucleosynthesis (n-process) 16.2 M star supernova model corresponding to SN 1987A Normal mass hierarchy, sin22q13 = 0.01 Increase by a factor of 2.5 and 1.4 7Be,11Cabundance Increase in the rates of charged-current reactions 4He(ne,e-p)3He and 12C(ne,e-p)11C in the He layer

  14. normal inverted no mix 7Li/11B Dependence on Mass Hierarchy and q13 N(7Li)/N(11B) Good indicator for neutrino oscillation parameters Including uncertainties in neutrino temperatures (Tne, Tne, Tnm,t, En) = (3.2, 5.0, 6.0, 3.0) , (3.2, 4.8, 5.8, 3.0) , (3.2, 5.0, 6.4, 2.4) , (3.2, 4.1, 5.0, 3.5) , (4.0, 4.0, 6.0, 3.0) , (4.0, 5.0, 6.0, 3.0) (MeV, MeV, MeV, ×1053ergs) Normal mass hierarchy and sin22q13 > 0.002 Cf. Yoshida et al., PRL 96 (2006) N(7Li)/N(11B) > 0.8 Possibility for constraining mass hierarchy and lower limit of the mixing angleq13. Neutrino experiments Constraining upper limitof q13

  15. 8-12MeV 7-12MeV 7-12MeV 8-13MeV fp-shell B(GT) for 58Ni M1 strength (GXPF1J) Honma Exp: Fujita et al.

  16. Neutron emission from Ni isotopes (BR by Higashiyama)

  17. Neutral current reaction on 56Ni

  18. Synthesis of Mn in Population III Star

  19. Yoshida, Umeda, Nomoto [Mn/Fe] No ν -0.53 HW02 -0.29 [Mn/Fe] GXPF1J -0.25 GXPF1J×2 -0.17 No ν With ν(GXPF1J) With ν x2 With ν(Woosley)

  20. Summary • Successful description of spin modes in nuclei (GT transitions, magnetic moments、and M1 transitions)by new shell model Hamiltonians • Enhancement of ν-nucleus reaction cross sections • More n emission from n-rch Ni isotopes • Enhancement of production yields of 7Li, 11B, and 55Mn in supernovae

  21. Collaborators T. Yoshidab, S. Chibac, M. Honmad, K. Higashiyamae, H. Umedaf, K. Nomotof, D.H. Hartmanng, T. Kajinob,f and T. Otsukah bNational Astronomical Observatory of Japan cJapan Atomic Energy Agency dUniversity of Aizu eChiba Institute of Technology FDepartment of Astronomy, University of Tokyo gDept. Of Physics and Astronomy, Clemson University hDepartment of Physics and CNS, University of Tokyo

  22. Magnetic moments of p-shell nuclei B(GT) values for 12C -> 12N SFO B(GT) values for 14N -> 14C SFO present = SFO Suzuki, Fujimoto, Otsuka, PR C67 (2003) Negret et al., PRL 97 (2006) KVI RCNP SFO*: gAeff/gA=0.95 B(GT: 12C)_cal = experiment

  23. ν-12C Exclusive 12C →12N (1+) Allen et al. (1990) EXP Exp: LSND PR C64 (2001) ●WBP: Warburton-Brown ●HT: Hayes-Towner, PR C62, 015501 (2000) p:Cohen-Kurath (8-16)2BME, sd: USD of Wildenthal, pf: KB3, p-sd and others: Millener-Kurath ●NCSM: Hayes-Navratil-Vary, PRL 91 (2003) AV8’(2-body) + TM’(99) (3-body) ●CRPA: Kolb-Langanke-Vogel, NP A652, 91 (1999) ●SFO*: gAeff/gA=0.95 Suzuki, Chiba, Yoshida, Kajino, Otsuka, PR C74 (2006)

More Related