390 likes | 497 Vues
This research explores the integration of Case-Based Reasoning (CBR) into Genetic Algorithms (GA) to improve their performance in solving combinational logic circuit design problems. By providing a memory of past solutions, the Case Injected Genetic Algorithm (CIGA) aims to adapt previously successful solutions to new challenges. The paper evaluates the effectiveness of this technique, outlines the combinational logic design process, and presents results comparing various strategies for case injection. Findings show promise for enhanced problem-solving capabilities in dynamic environments.
E N D
Case Injected Genetic Algorithms Sushil J. Louis Genetic Algorithm Systems Lab (gaslab) University of Nevada, Reno http://www.cs.unr.edu/~sushil http://gaslab.cs.unr.edu/ sushil@cs.unr.edu
Learning from Experience: Case Injected Genetic Algorithm Design of Combinational Logic Circuits Sushil J. Louis Genetic Algorithm Systems Lab (gaslab) University of Nevada, Reno http://www.cs.unr.edu/~sushil http://gaslab.cs.unr.edu/ sushil@cs.unr.edu
Outline • Motivation • What is the technique? • Genetic Algorithm and Case-Based Reasoning • Is it useful? • Evaluate performance on Combinational Logic Design • Results • Conclusions
Outline • Motivation • What is the technique? • Genetic Algorithm and Case-Based Reasoning • Is it useful? • Combinational Logic Design • Strike Force Asset Allocation • TSP • Scheduling • Conclusions
Genetic Algorithm • Non-Deterministic, Parallel, Search • Poorly understood problems • Evaluate, Select, Recombine • Population search • Population member encodes candidate solution • Building blocks combine to make progress • More resistant to local optima • Iterative, requiring many evaluations
Motivation • Deployed systems are expected to confront and solve many problems over their lifetime • How can we increase genetic algorithm performance with experience? • Provide GA with a memory
Case-Based Reasoning • When confronted by a new problem, adapt similar (already solved) problem’s solution to solve new problem • CBR Associative Memory + Adaptation • CBR: Indexing (on problem similarity) and adaptation are domain dependent
Case Injected Genetic AlgoRithm • Combine genetic search with case-based reasoning • Case-base provides memory • Genetic algorithm provides adaptation • Genetic algorithm generates cases • Any member of the GA’s population is a case
Related work • Seeding:Koza, Greffensttette, Ramsey, Louis • Lifelong learning: Thrun • Key Differences • Store and reuse intermediate solutions • Solve sequences of similar problems
Combinational Logic Design • An example of configuration design • Given a function and a target technology to work with design an artifact that performs this function subject to constraints • Target technology: Logic gates • Function: Parity checking • Constraints: 2-D gate array
Which cases to inject? • Problem distance metric (Louis ‘97) • Domain dependent • Solution distance metric • Genetic algorithm encodings • Binary – hamming distance • Real – euclidean distance • Permutation – longest common substring • …
Lessons • Storing and Injecting solutions may not improve solution quality • Storing and Injecting partial solutions does lead to improved quality
Periodic Injection Strategies • Closest to best • Furthest from worst • Probabilistic closest to best • Probabilistic furthest from worst • Randomly choose a case from case-base • Create random individual
Setup • 50, 6-bit combinational logic design problems • Randomly select and flip bits in parity output to define logic function • Compare performance • Quality of final design solution (correct output) • Time to this final solution (in generations)
Population size: 30 No of generations: 30 CHC (elitist) selection Scaling factor: 1.05 Prob. Crossover: 0.95 Prob. Mutation: 0.05 Store best individual every generation Inject every 5 generations (2^5 = 32) Inject 3 cases (10%) Multiple injection strategies Parameters Averages over 10 runs
Strike force asset allocation • Allocate platforms to targets • Dynamic • Changing Priority • Battlefield conditions • Popup • Weather • …
Factors in allocation • Pilot proficiency • Asset suitability • Priority • Risk • Route • Other assets (SEAD) • Weather
Maximize mission success • Binary encoding • Platform to multiple targets • Target can have multiple platforms • Dynamic battle-space • Strong time constraints
Setup • 50 problems. • 10 platforms, 40 assets, 10 targets • Each platform could be allocated to two targets • Problems varied in risk matrix • Popsize=80, Generations=80, Pc=1.0, Pm=0.05, probabilistic closest to best, injection period=9, injection % = 10% of popsize
TSP • Find the shortest route that visits every city exactly once (except for start city) • Permutation encoding. Ex: 35412 • Similarity metric: Longest common subsequence (Cormen et al, Introduction to Algorithms) • 50 problems, move city locations
Scheduling • Job shop scheduling problems • Permutation encoding (Fang) • Similarity metric: Longest common subsequence (Cormen et al, Introduction to Algorithms) • 50 problems, change task lengths
Summary • Case Injected Genetic AlgoRithm: A hybrid system that combines genetic algorithms with a case-based memory • Defined problem-similarity and solution-similarity metrics • Defined performance metrics and showed empirically that CIGAR learns to increase performance for sequences of similar problems
Conclusions • Case Injected Genetic AlgoRithm is a viable system for increasing performance with experience • Implications for system design • Increases performance with experience • Generates cases during problem solving • Long term navigable store of expertise • Design analysis by analyzing case-base