1 / 40

Graphic Organizers

Graphic Organizers. Graphic Organizers (GOs). A graphic organizer is a tool or process to build word knowledge by relating similarities of meaning to the definition of a word. This can relate to any subject—math, history, literature, etc. Why are Graphic Organizers Important?.

gaia
Télécharger la présentation

Graphic Organizers

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Graphic Organizers

  2. Graphic Organizers (GOs) A graphic organizer is a tool or process to build word knowledge by relating similarities of meaning to the definition of a word. This can relate to any subject—math, history, literature, etc.

  3. Why are Graphic Organizers Important? • GOs connect content in a meaningful way to help students gain a clearer understanding of the material (Fountas & Pinnell, 2001, as cited in Baxendrall, 2003). • GOs help students maintain the information over time (Fountas & Pinnell, 2001, as cited in Baxendrall, 2003).

  4. Graphic Organizers: • Assist students in organizing and retaining information when used consistently. • Assist teachers by integrating into instruction through creative approaches.

  5. Graphic Organizers: • Heighten student interest • Should be coherent and consistently used • Can be used with teacher- and student- directed approaches

  6. Coherent Graphic Organizers • Provide clearly labeled branch and sub branches. • Have numbers, arrows, or lines to show the connections or sequence of events. • Relate similarities. • Define accurately.

  7. How to Use Graphic Organizers in the Classroom • Teacher-Directed Approach • Student-Directed Approach

  8. Teacher-Directed Approach • Provide a partially complete GO for students • Have students read instructions or information • Fill out the GO with students • Review the completed GO • Assess students using an incomplete copy of the GO

  9. Student-Directed Approach • Teacher uses a GO cover sheet with prompts • Example: Teacher provides a cover sheet that includes page numbers and paragraph numbers to locate information needed to fill out GO • Teacher acts as a facilitator • Students check their answers with a teacher copy supplied on the overhead

  10. Strategies to Teach Graphic Organizers • Framing the lesson • Previewing • Modeling with a think aloud • Guided practice • Independent practice • Check for understanding • Peer mediated instruction • Simplifying the content or structure of the GO

  11. Types of Graphic Organizers • Hierarchical diagramming • Sequence charts • Compare and contrast charts

  12. A Simple Hierarchical Graphic Organizer

  13. A Simple Hierarchical Graphic Organizer - example Geometry Algebra MATH Trigonometry Calculus

  14. Another Hierarchical Graphic Organizer Category Subcategory Subcategory Subcategory List examples of each type

  15. Hierarchical Graphic Organizer – example Algebra Equations Inequalities 6y ≠15 14 < 3x + 7 2x > y 10y = 100 2x + 3 = 15 4x = 10x - 6

  16. Compare and Contrast Category What is it? Illustration/Example Properties/Attributes Subcategory Irregular set What are some examples? What is it like?

  17. Compare and Contrast - example Numbers What is it? Illustration/Example Properties/Attributes 6, 17, 25, 100 Positive Integers Whole Numbers -3, -8, -4000 Negative Integers 0 Zero Fractions What are some examples? What is it like?

  18. Venn Diagram

  19. Prime Numbers 5 7 11 13 2 3 Even Numbers 4 6 8 10 Multiples of 3 9 15 21 6 Venn Diagram - example

  20. Multiple Meanings

  21. 3 sides 3 sides 3 angles 3 angles 3 angles = 60° 1 angle = 90° 3 sides 3 angles 3 angles < 90° Multiple Meanings – example Right Equiangular TRI- ANGLES Acute Obtuse 3 sides 3 angles 1 angle > 90°

  22. Series of Definitions Word = Category + Attribute = + Definitions: ______________________ ________________________________ ________________________________

  23. Series of Definitions – example Word = Category + Attribute = + Definition: A four-sided figure with four equal sides and four right angles. 4 equal sides & 4 equal angles (90°) Square Quadrilateral

  24. Four-Square Graphic Organizer 1. Word: 2. Example: 4. Definition 3. Non-example:

  25. Four-Square Graphic Organizer – example 1. Word: semicircle 2. Example: 4. Definition 3. Non-example: A semicircle is half of a circle.

  26. Matching Activity • Divide into groups • Match the problem sets with the appropriate graphic organizer

  27. Matching Activity • Which graphic organizer would be most suitable for showing these relationships? • Why did you choose this type? • Are there alternative choices?

  28. Problem Set 1 Parallelogram Rhombus Square Quadrilateral Polygon Kite Irregular polygon Trapezoid Isosceles Trapezoid Rectangle

  29. Problem Set 2 Counting Numbers: 1, 2, 3, 4, 5, 6, . . . Whole Numbers: 0, 1, 2, 3, 4, . . . Integers: . . . -3, -2, -1, 0, 1, 2, 3, 4. . . Rationals: 0, …1/10, …1/5, …1/4, ... 33, …1/2, …1 Reals: all numbers Irrationals: π, non-repeating decimal

  30. Problem Set 3 Addition Multiplication a + b a times b a plus b a x b sum of a and b a(b) ab Subtraction Division a – b a/b a minus b a divided by b a less b b) a

  31. Problem Set 4 Use the following words to organize into categories and subcategories of Mathematics: NUMBERS, OPERATIONS, Postulates, RULE, Triangles, GEOMETRIC FIGURES, SYMBOLS, corollaries, squares, rational, prime, Integers, addition, hexagon, irrational, {1, 2, 3…}, multiplication, composite, m || n, whole, quadrilateral, subtraction, division.

  32. Graphic Organizer Summary • GOs are a valuable tool for assisting students with LD in basic mathematical procedures and problem solving. • Teachers should: • Consistently, coherently, and creatively use GOs. • Employ teacher-directed and student-directed approaches. • Address individual needs via curricular adaptations.

  33. Resources • Maccini, P., & Gagnon, J. C. (2005). Math graphic organizers for students with disabilities. Washington, DC: The Access Center: Improving Outcomes for all Students K-8. Available at http://www.k8accescenter.org/training_resources/documents/MathGraphicOrg.pdf • Visual mapping software: Inspiration and Kidspiration (for lower grades) at http:/www.inspiration.com • Math Matrix from the Center for Implementing Technology in Education. Available at http://www.citeducation.org/mathmatrix/

  34. Resources • Hall, T., & Strangman, N. (2002).Graphic organizers. Wakefield, MA: National Center on Accessing the General Curriculum. Available at http://www.cast.org/publications/ncac/ncac_go.html • Strangman, N., Hall, T., Meyer, A. (2003) Graphic Organizers and Implications for Universal Design for Learning: Curriculum Enhancement Report. Wakefield, MA: National Center on Accessing the General Curriculum. Available at http://www.k8accesscenter.org/training_resources/udl/GraphicOrganizersHTML.asp

  35. How These Strategies Help Students Access Algebra • Problem Representation • Problem Solving (Reason) • Self Monitoring • Self Confidence

  36. Recommendations: • Provide a physical and pictorial model, such as diagrams or hands-on materials, to aid the process for solving equations/problems. • Use think-aloud techniques when modeling steps to solve equations/problems. Demonstrate the steps to the strategy while verbalizing the related thinking. • Provide guided practice before independent practice so that students can first understand what to do for each step and then understand why.

  37. Additional Recommendations: • Continue to instruct secondary math students with mild disabilities in basic arithmetic. Poor arithmetic background will make some algebraic questions cumbersome and difficult. • Allot time to teach specific strategies. Students will need time to learn and practice the strategy on a regular basis.

  38. Wrap-Up • Questions

  39. Closing Activity Principles of an effective lesson: Before the Lesson: • Review • Explain objectives, purpose, rationale for learning the strategy, and implementation of strategy During the Lesson: • Model the task • Prompt students in dialogue to promote the development of problem-solving strategies and reflective thinking • Provide guided and independent practice • Use corrective and positive feedback

  40. Concepts for Developing a Lesson Grades K-2 • Use concrete materials to build an understanding of equality (same as) and inequality (more than and less than) • Skip counting Grades 3- 5 • Explore properties of equality in number sentences (e.g., when equals are added to equals the sums are equal) • Use physical models to investigate and describe how a change in one variable affects a second variable Grades 6-8 • Positive and negative numbers (e.g., general concept, addition, subtraction, multiplication, division) • Investigate the use of systems of equations, tables, and graphs to represent mathematical relationships

More Related