160 likes | 331 Vues
This lecture delves into the analysis of frequency modulation (FM) signals, focusing on single-tone FM, Bessel functions, and FM spectra. Presented by Shreekanth Mandayam from the ECE Department at Rowan University, the lecture provides insights into digital communication systems, signal representation, and modulation techniques. It also covers topics like phase and frequency modulation indices, signal efficiencies, and bandwidth considerations. Hands-on MATLAB demonstrations illustrate key concepts, including Bessel functions and their applications in FM signals, enriching the learning experience.
E N D
Electrical Communications SystemsECE.09.331Spring 2007 Lecture 8bMarch 7, 2007 Shreekanth Mandayam ECE Department Rowan University http://engineering.rowan.edu/~shreek/spring07/ecomms/
Plan • Analyzing FM Signals - Battle Plan!!!! • Single-tone FM • Bessel Functions • FM Spectra • Power etc. • Digital Communications • Introduction • Digital Communications Transceiver (CODEC/MODEM)
Angle Modulation Systems • Signal Representation • Complex Envelope • Time Domain Representation • Terminology • Phase Sensitivity • Frequency Deviation • Instantaneous Frequency • Phase & Frequency Modulation Indices Phase Modulation (PM) Frequency Modulation(FM) Instrument Demo Matlab Demo: anglemod.m
Signals Systems • Time Domain • Complex Envelope • Spectrum • Single-tone FM • Narrowband FM • Wideband FM • Bessel Functions • Power Performance Transmitters Receivers Standards Modulation Index Efficiency Bandwidth Noise Analyzing FM Signals - Battle Plan!!! Instrument Demo
Bessel’s Differential Equation • German mathematician and astronomer Friedrich Wilhelm Bessel (1784 - 1846) • Discovered this equation while investigating planetary motion • 2nd order ODE, Nonlinear, Variable Coefficients, Homogeneous • Very important in applied mathematics and engineering • Governing equation for problems with cylindrical geometries, e.g. waveguides, vibrating strings, and …………!!!!!!!
Bessel Functions Matlab Demo » help besselj BESSELJ Bessel function of the first kind. J = BESSELJ(NU,Z) is the Bessel function of the first kind, J_nu(Z).The order NU need not be an integer, but must be real.The argument Z can be complex. The result is real where Z is positive. » » » » x=0:0.1:10; » plot(x,besselj(0,x)); » title('Bessel Function of Order Zero, J_0(x)'); » xlabel('x'); »
Bessel Functions Matlab Demo %ECOMMS Spring 07 Classroom Demo %S. Mandayam, ECE, Rowan University clear;close all; n=0:6; beta=0:0.1:10; Jn=besselj(n,beta'); plot(beta',Jn); grid on; xlabel('Frequency Modulation Index: \beta'); ylabel('J_n(\beta)'); legend('J_0(\beta)','J_1(\beta)','J_2(\beta)', 'J_3(\beta)','J_4(\beta)','J_5(\beta)','J_6(\beta)'); title('J_n(\beta): Spectral Amplitudes of an FM signal at f_c \pm nf_m'); http://engineering.rowan.edu/~shreek/spring07/ecomms/demos/besselfun.m Instrument Demo
J1(b) |S(f)| / (Ac/2) J2(b) J3(b) J0(b) 0fc-3fm fc-2fm fc-fm fc fc+fm fc+2fm fc+3fm f FM Signal & Spectrum Single-tone FM Signal Single-tone FM Spectrum
Digital Communications • Some Milestones • Claude Shannon, 1948 • X.25 (Telephony) • IEEE 802.3 (Ethernet) • ARPANET, 1969 • IEEE 802.5 (FDDI) • ISO-OSI 7-layer Network Reference Model • CDMA • GSM • VOIP • SIP protocols.com
Digital Communications: Rationale • Information Theory: • What is the fundamental limit on the compression and refinement of information generated by the source? • What is the fundamental limit on the transmission rate of information over a noisy channel? • How do we approach these limits?
Principle Digital message 1 1 1 0 1 0……… 0 0 Digital code Analog message modulate 1 0 1 0 Sinusoidal carrier AM FM PM AM & PM
Message 1 Message 1 Multiplexer 2 Demultiplexer 1 2 3 1 S 2 3 S Message 2 Message 2 Message 3 Message 3 3 H H 1 Depacket-izing Message 1 2 H Message 1 3 H H 1 Depacket-izing Packetizing Message 2 Message 2 2 H 3 H Message 3 Depacket-izing H 1 Message 3 2 H Digital Communication Paradigms Circuit Switching Sync bits Packet Switching Header bits
Digital Communications Transceiver Anti- aliasing Filter Error Control Encoder Data Encryption Encoder Channel/ Line Encoder Source Encoder Sampling Quantization Modulator MUX ADC Analog i/p CODEC MODEM Multiple access channel Analog o/p Error Control Decoder Data Encryption Decoder Source Decoder Audio Amp Reconstruction/ DAC Equalization / Decision Circuits Demod-ulator DEMUX