130 likes | 228 Vues
Learn how to perform operations such as sum, difference, quotient, and product on functions, including finding values and determining domains. Explore composition of functions and inverse functions with helpful examples and methods. Check your understanding with practice questions.
E N D
Section 1.1.3 Operations with Functions
Operations with Functions Let f and g be any two functions. • We define as follows:
Operations with Functions Let f and g be any two functions. Domain: f__________ g ___________ Finding the value : _________________________________ Find
Operations with Functions Let f and g be any two functions. • We define as follows: Sum: _________________________________ Domain: ___________________________ Find ( f + g ) (x) and determine the domain
Operations with Functions Let f and g be any two functions. Difference: _________________________________ Domain: ___________________________ Find ( f - g ) (x) and determine the domain
Operations with Functions Let f and g be any two functions. • Quotient: _________________________________ Domain: ___________________________ Find and determine the domain
Operations with Functions Let f and g be any two functions. • Product: _______________________ written _____ or _____ Domain: ___________________________ Find (fg)(x) and determine the domain Careful: ____________________________________________________________
Composition of Functions: _________________________________________ • Forms: ________________________________________ ________________________________________
Inverse of a Function Inverse of a Function ____________________________________________________ Notation : ____________________________ read ___________________________________ ( Caution: __________________________________________ )
Defn: (words) ____________________________________________________ If _______________________________________ then ____________________________________ Defn: (math) ____________________________________________________ ____________________________________________________
Method to find an inverse: ____________________________________________________ ____________________________________________________ Check : Find f(4)