1 / 34

Multi-instrument, multi-spacecraft analysis … Finite Gyroradius (from last time) Review:

ESS 261 Spring Quarter 2009. Multi-instrument, multi-spacecraft analysis … Finite Gyroradius (from last time) Review: SST cleanup, MHD Electric Field from Particle Velocity Total Density Computation from Various Sources Total Pressure. Lecture 05 May 27, 2009.

gaye
Télécharger la présentation

Multi-instrument, multi-spacecraft analysis … Finite Gyroradius (from last time) Review:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ESS 261 Spring Quarter 2009 Multi-instrument, multi-spacecraft analysis … Finite Gyroradius (from last time) Review: SST cleanup, MHD Electric Field from Particle Velocity Total Density Computation from Various Sources Total Pressure Lecture 05 May 27, 2009 Multi-Instrument/Spacecraft 1

  2. Finite gyroradius techniques To Tail • Ion Gyroradius large compared to magnetospheric boundaries • Can be used to remotely sense speedand thickness of boundaries • Assumption is that boundary is sharpand flux has step function across • Application at the magnetopause • Application at the magnetotail • Can also be applied to waves ifparticle gradient is sufficiently high • Application on ULF waves atinner magnetosphere THEMIS To Earth To Sun Method exploits finite iongyroradius to remotely senseapproaching ion boundary and measure boundary speed (V⊥) Multi-Instrument/Spacecraft 2

  3. At the magnetotail ri,thermal-tail (4keV,20nT)= ~325km ri,super-thermal (50keV,20nT)= ~2200km Plasma Sheet Thickness ~ 1-3 RE Boundary Layer Thickness ~500-2000km Current layer Thickness ~ 500-2000km Waves Across Boundary: ~1000-10,000km Along Boundary: ~Normal : 1-10 RE For magnetotail particles, the current layer and plasma sheet boundary layer are sharp compared to the superthermal ion gyroradius and the magnetic field is the same direction in the plasma sheet and outside (the lobe). This means we can use the measured field to determine gyrocenters both at the outer plasma sheet and the lobe, on either side of the hot magnetotail boundary. Multi-Instrument/Spacecraft 3

  4. 52o Side View (elevations) 25o SST: Elevationdirection (qDSL) SpinAxis -25o To Sun -52o ESA: Elevationdirection (qDSL) 33.75o 11.25o Multi-Instrument/Spacecraft 4

  5. Top View (sectors) For ESA and SST (0=Sun) Spin axis To Sun (0o) 11.25o 33.75o Spin motiondirection ( fDSL) Normal to Sun, +90o Multi-Instrument/Spacecraft 5

  6. B fieldazimuth (solid white) You care to time this!(+/- 90o to Bfield azimuth) Particle motion direction Coordinate: ( fDSL) Energy: 125-175keV Note: direction dependson spin axis. -B fieldazimuth (dashed white) Multi-Instrument/Spacecraft 6

  7. Multiple spacecraft, energies, elevations A B …. D E Elev: 25deg E=30-50keV Elev: 25deg, E=80-120keV Multi-Instrument/Spacecraft 7

  8. Vi_const 310km/sec/keV fci_cons 0.0152Hz/nT B 30nT Ti 40keV rho_ion 683km Ti 100keV rho_ion 1081km Ti 150keV rho_ion 1323km Ti 300keV rho_ion 1872km SC E (keV) detectord (deg) r time B 40 SPW -128.0 683.4 11:19:29 B 40 SPE -52.0 683.4 11:19:39 B 40 SEW -155.0 683.4 11:19:18 B 40 SEE -25.0 683.4 11:19:42 B 40 NPW 128.0 683.4 11:19:29 B 40 NPE 52.0 683.4 11:19:38 B 40 NEW 155.0 683.4 11:19:24 B 40 NEE 25.0 683.4 11:19:43 B 100 SPW -128.0 1080.5 11:19:17 B 100 SPE -52.0 1080.5 11:19:42 B 100 SEW -155.0 1080.5 11:19:20 B 100 SEE -25.0 1080.5 11:19:45 B 100 NPW 128.0 1080.5 11:19:20 B 100 NPE 52.0 1080.5 11:19:45 B 100 NEW 155.0 1080.5 11:19:23 B 100 NEE 25.0 1080.5 11:19:48 B 150 SPW -128.0 1323.4 11:19:10 B 150 SPE -52.0 1323.4 11:19:44 B 150 SEW -155.0 1323.4 11:19:14 B 150 SEE -25.0 1323.4 11:19:51 B 150 NPW 128.0 1323.4 11:19:23 B 150 NPE 52.0 1323.4 11:19:45 B 150 NEW 155.0 1323.4 11:19:13 B 150 NEE 25.0 1323.4 11:19:48 B 300 SPW -128.0 1871.5 11:19:10 B 300 SPE -52.0 1871.5 11:19:44 B 300 SEW -155.0 1871.5 11:19:14 B 300 SEE -25.0 1871.5 11:19:51 B 300 NPW 128.0 1871.5 11:19:23 B 300 NPE 52.0 1871.5 11:19:45 B 300 NEW 155.0 1871.5 11:19:13 B 300 NEE 25.0 1871.5 11:19:48 Note: NEE= North-Equatorial, East NPW=North-Equatorial, West Angles measured from East direction -25deg elevation, 90deg East = SEE +52deg elevation, 90deg East = NPE … Spin axis NPW NPE NEW NEE B SEW SEE SPW SPE Boundary Multi-Instrument/Spacecraft 8

  9. Spin axis NPW NPE B V: NEE Part. direction NEW NEE SC d Y SEW SEE d r Z SPW SPE n Cold/tenuous plasma Y GCNEE n Hot/dense plasma e Y Show: d=r*sin(d-e) Note: d negative if moving towards spacecraft Boundary Multi-Instrument/Spacecraft 9

  10. Procedure • For a given e, determine variance of data for all d • Find minimum in variance, this determines e (boundary direction) • Speed distance as function of time determines boundary speed • intro_ascii,'remote_sense_A.txt',delta,rho,hh,mm,ss,nskip=13,format="(25x,f6.1,f8.1,3(1x,i2))" • ; • angle=fltarr(73) • chisqrd=fltarr(73) • for ijk=0,72 do begin • epsilon=float(ijk*5) • get_d_vs_dt,epsilon,hh,mm,ss,rho,delta,dist,times • yfit=dist & yfit(*)=0. • chi2=dist & chi2(*)=0. • coeffs=svdfit(times,dist,2,yfit=yfit,chisq=chi2) • angle(ijk)=epsilon • chisqrd(ijk)=chi2 • endfor • ipos=indgen(30)+43 • chisqrd_min=min(chisqrd(ipos),imin) • plot,angle,chisqrd • print,angle(ipos(imin)),chisqrd(ipos(imin)) • ; • stop Multi-Instrument/Spacecraft 10

  11. Z D Y B A V ~ 70km/s 1000 km • Procedure • Note two minima (identical solutions) • One for approaching boundary at V>0 • One for receding boundary at V<0 • Convention that d<0 if boundarymoves towards spacecraftallows us to pick one of the two(positive slope of d versus time) Multi-Instrument/Spacecraft 11

  12. tcross V [km/s] e [deg] D 11:19:27.6 75 270 B 11:19:31.8 70 280 A 11:19:38.4 80 275 Table 1. Results of remote sensing analysis on the inner probes Timing of the arrivals of the other signatures at the inner three spacecraft Multi-Instrument/Spacecraft 12

  13. At the magnetopause ri,sheath (0.5keV,10nT)= ~200km ri,m-sphere (10keV,10nT)= ~1000km Magnetopause Thickness ~ 6000km Current layer Thickness ~ 500km FTE scale, Normal 2 Boundary: ~6000km Along Boundary: ~Normal : 1-3 RE For leaking magnetospheric particles, the currentlayer is sharp compared to the ion gyroradius andthe magnetic field is the same direction in the sheath and the magnetopause outside the current layer. This means we can use the measured field outside themagnetopause to determine gyrocenters both at the magnetopause and the magnetosheath on either side of the hot magnetopause boundary. Multi-Instrument/Spacecraft 13

  14. Magnetopause encounter on July 12, 2007 Magnetic field angle is 60deg below spin plane and +120deg in azimuth i.e., anti-Sunward and roughly tangent to the magnetopause. The particle velocities, centered at 52deg above the spin plane, have roughly 90o pitch angles, with gyro-centers that were on the Earthward side of the spacecraft. The energy spectra of the NP particles show clearly the arrival of the FTE ahead of its magnetic signature, remotely sensing its arrival due to the finite gyroradius effect of the energetic particles. DT=55s, r(i,100keV, 28nT) =1150km, V=40km/s Multi-Instrument/Spacecraft 14

  15. At the near-Earth magnetosphere Multi-Instrument/Spacecraft 15

  16. At the near-Earth magnetosphere Multi-Instrument/Spacecraft 16

  17. At the near-Earth magnetosphere Remote sensing of wavesin ESA data, at the mostappropriate coordinate System, I.e, field alignedcoordinates. gyro=0o => Earthward particles timespan,'7 11 07/10',2,/hours & sc='a' thm_load_state,probe=sc,/get_supp thm_load_fit,probe=sc,data='fgs',coord='gsm',suff='_gsm' thm_load_mom,probe=sc ; L2: onboard processed moms thm_load_esa,probe=sc ; L2: gmoms, omni spectra tplot,'tha_fgs_gsm tha_pxxm_pot tha_pe?m_density tha_pe?r_en_eflux' ; trange=['07-11-07/11:00','07-11-07/11:30'] thm_part_getspec, probe=['a'], trange=trange, angle='gyro', $ pitch=[45,135], other_dim='mPhism', $ ; /normalize, $ data_type=['peir'], regrid=[32,16] tplot,'tha_peir_an_eflux_gyro tha_fgs_gsm tha_pxxm_pot tha_pe?m_density tha_pe?r_en_eflux' Multi-Instrument/Spacecraft 17

  18. At the near-Earth magnetosphere Same as before but using keyword: /normalize I.e., anisotropy is normalized to 1, to ensure flux variations do not affect anisotropy calculation. trange=['07-11-07/11:00','07-11-07/11:30'] thm_part_getspec, probe=['a'], trange=trange, angle='gyro', $ pitch=[45,135], other_dim='mPhism', $ /normalize, $ data_type=['peir'], regrid=[32,16] tplot,'tha_peir_an_eflux_gyro tha_fgs_gsm tha_pxxm_pot tha_pe?m_density tha_pe?r_en_eflux' Multi-Instrument/Spacecraft 18

  19. Clean up SST, ESA, EFI measurements [1] • Preliminary Tasks • SST: Sun contamination removal (see Lecture 08) • ESA: background noise removal (mostly in tail, inner magnetosphere) • ESA: watch-out for cold ions (via total density, spectra, mostly dayside) • EFI: remove offsets, watch-out for cold ion wake (via waveforms) • Obtain partial moments, add them, compare with scpot-density • Ready for further analysis Multi-Instrument/Spacecraft 19

  20. Multi-Instrument/Spacecraft 20

  21. Multi-Instrument/Spacecraft 21

  22. Preliminary Tasks [clean SST] • timespan,'2008-02-26/03',3,/hours • sdate=time_double('2008-02-26/03:00:00') • edate=time_double('2008-02-26/06:00:00') • trange=[sdate,edate] • ; • eVpercc_to_nPa=0.1602/1000. ; multiply • nTesla2_to_nPa=0.01/25.132741 ; multiply • ; • thm_load_state,/get_supp • thm_load_fgm,probe='e',coord='dsl gsm' • thm_load_sst,probe='e' ; reads L1 SST data • thm_load_esa,probe='e' ; reads L2 ESA data • ; • ; Clean up SST data ------------------------------------------------------------- • sc='e' • thm_part_getspec, probe=sc,trange=trange, $ • theta=[-45,0],data_type=['psif','psef'],angle=phi,suff='_m45'$ • , erange=[25000,100000] • thm_part_getspec, probe=sc,trange=trange, $ • theta=[-90,0],data_type=['psif','psef'],angle=phi,suff='_m90'$ • , erange=[25000,100000] • thm_part_getspec, probe=sc,trange=trange, $ • theta=[0,45],data_type=['psif','psef'],angle=phi,suff='_p45'$ • , erange=[25000,100000] • thm_part_getspec, probe=sc,trange=trange, $ • theta=[45,90],data_type=['psif','psef'],angle=phi,suff='_p90'$ • , erange=[25000,100000] • example of plotting spectra as lines • options,'th'+sc+'_ps?f_an_eflux_phi*',spec=0 ; line plot: spec=0, spectra: spec=1 • ylim,'th'+sc+'_ps?f_an_eflux_phi*',1.e-5,1.e-5,1 • tplot_options,'th'+sc+'_ps?f_an_eflux_phi*',title='Line plot' • tplot,'th'+sc+'_ps?f_an_eflux_phi*' • ; • ; replot as spectra • options,'th'+sc+'_ps?f_an_eflux_phi*',spec=1 ; line plot: spec=0, spectra: spec=1 • tplot_options,'th'+sc+'_ps?f_an_eflux_phi*',title=' ' • ylim,'th'+sc+'_ps?f_an_eflux_phi*',0,360,0 • tplot,'th'+sc+'_psif_an_eflux_phi* th'+sc+'_psef_an_eflux_phi*' • tplot,/pick Multi-Instrument/Spacecraft 22

  23. Preliminary Tasks [clean SST #2] • ; SST Ions only enough, no need for electrons now • ; • edit3dbins,thm_sst_psif(probe=sc, gettime(/c)), ibins • print,ibins • tplot,'th'+sc+'_psif_an_eflux_phi* th'+sc+'_psef_an_eflux_phi*' • t1=time_double('2008-02-26/03:15:00') • t2=time_double('2008-02-26/03:18:00') • times=[t1,t2] • ; • thm_part_getspec, probe=sc,$ • theta=[-45,0],data_type=['psif'],angle=phi,suff='_m45c'$ • , erange=[25000,100000],/mask_remove,fillin_method='interpolation'$ • , method_sunpulse_clean='median' $ • , enoise_bins=ibins, enoise_bgnd_time=times • thm_part_getspec, probe=sc,$ • theta=[-90,0],data_type=['psif'],angle=phi,suff='_m90c'$ • , erange=[25000,100000],/mask_remove,fillin_method='interpolation'$ • , method_sunpulse_clean='median' $ • , enoise_bins=ibins, enoise_bgnd_time=times • thm_part_getspec, probe=sc,$ • theta=[0,45],data_type=['psif'],angle=phi,suff='_p45c'$ • , erange=[25000,100000],/mask_remove,fillin_method='interpolation'$ • , method_sunpulse_clean='median' $ • , enoise_bins=ibins, enoise_bgnd_time=times • thm_part_getspec, probe=sc,$ • theta=[45,90],data_type=['psif'],angle=phi,suff='_p90c'$ • , erange=[25000,100000],/mask_remove,fillin_method='interpolation'$ • , method_sunpulse_clean='median' $ • , enoise_bins=ibins, enoise_bgnd_time=times • thm_part_moments,probe=probe,instrum=['psif'] $ • ,/mask_remove,fillin_method='interpolation'$ • , method_sunpulse_clean='median' $ • , enoise_bins=ibins, enoise_bgnd_time=times $ • , /scale_sphere • thm_part_getspec, probe=sc $ • , data_type=['psif'],/energy $ • ,/mask_remove,fillin_method='interpolation' $ • , method_sunpulse_clean='median' $ • , enoise_bins=ibins, enoise_bgnd_time=times $ • ylim,'th'+sc+'_psif_density',1.e-5,1.e-5,1 • ylim,'th'+sc+'_psif_velocity',0,0,0 • ylim,'th'+sc+'_psif_t3',1.e-5,1.e-5,1 • ; • tplot,'the_psif_density the_psif_velocity the_psif_t3 the_psif_en_eflux th'+sc+'_psif_an_eflux_phi_???c' Multi-Instrument/Spacecraft 23

  24. Multi-Instrument/Spacecraft 24

  25. Recompute ESA moments, using reworked sc_pot • tplot,'the_pxxm_pot',/add • get_data,'the_pxxm_pot',data=the_pxxm_pot • the_pxxm_pot.y=(the_pxxm_pot.y+1.)*1.15 ; correct for sphere bias and shielding • store_data,'the_pxxm_pot1',data={x:the_pxxm_pot.x,y:the_pxxm_pot.y} • thm_load_esa_pkt,probe='e' • thm_part_moments,probe=sc,instrum=['peir', 'peer'],scpot_suffix='_pxxm_pot1',tplotsuffix='_norm',trange=[sdate,edate] • ; • ; recompute total density, velocity, temperature • sst_scale=1. • ; • ; density • ; • tinterpol_mxn,'the_psif_density','the_peir_density_norm',suff='_int' • calc,'"the_psif_density_int" = sst_scale*"the_psif_density_int"' • add_data,'the_psif_density_int','the_peir_density_norm',newname='the_ptim_density_new' • ; Multi-Instrument/Spacecraft 25

  26. Recompute ESA mom’s, using reworked sc_pot [2] • ; • ; velocity • ; • tinterpol_mxn,'the_psif_velocity','the_peir_density_norm',suff='_int' • get_data,'the_psif_density_int',data=the_psif_density_int • get_data,'the_psif_velocity_int',data=the_psif_velocity_int • get_data,'the_peir_density_norm',data=the_peir_density_norm • get_data,'the_peir_velocity_norm',data=the_peir_velocity_norm • get_data,'the_ptim_density_new',data=the_ptim_density_new • vel_tot_0=(the_psif_density_int.y*the_psif_velocity_int.y(*,0)+ $ • the_peir_density_norm.y*the_peir_velocity_norm.y(*,0) ) / $ • the_ptim_density_new.y • vel_tot_1=(the_psif_density_int.y*the_psif_velocity_int.y(*,1)+ $ • the_peir_density_norm.y*the_peir_velocity_norm.y(*,1) ) / $ • the_ptim_density_new.y • vel_tot_2=(the_psif_density_int.y*the_psif_velocity_int.y(*,2)+ $ • the_peir_density_norm.y*the_peir_velocity_norm.y(*,2) ) / $ • the_ptim_density_new.y • store_data,'the_ptim_velocity_new',data={x:the_peir_density_norm.x, $ • y:[[vel_tot_0],[vel_tot_1],[vel_tot_2]]} • options,'the_ptim_velocity_new',colors=[2,4,6] • ; Multi-Instrument/Spacecraft 26

  27. Recompute ESA mom’s, using reworked sc_pot [3] • ; pressure and temperature • ; • tinterpol_mxn,'the_psif_t3','the_peir_density_norm',suff='_int' • get_data,'the_psif_t3_int',data=the_psif_t3_int • get_data,'the_peir_t3_norm',data=the_peir_t3_norm • get_data,'the_peer_t3_norm',data=the_peer_t3_norm • press_tot=the_psif_density_int.y*total(the_psif_t3_int.y,2)/3 + $ • the_peir_density_norm.y*total(the_peir_t3_norm.y,2)/3 • store_data,'the_ptim_pressure_new',data={x:the_peir_density_norm.x, $ • y:press_tot} • store_data,'the_psif_pressure_int',data={x:the_peir_density_norm.x, $ • y:the_psif_density_int.y*total(the_psif_t3_int.y,2)/3} • store_data,'the_peir_pressure_norm',data={x:the_peir_density_norm.x, $ • y:the_peir_density_norm.y*total(the_peir_t3_norm.y,2)/3} • div_data,'the_ptim_pressure_new','the_ptim_density_new',newname='the_ptim_temperature_new' • store_data,'the_peer_pressure_norm',data={x:the_peir_density_norm.x, $ • y:the_peir_density_norm.y*total(the_peer_t3_norm.y,2)/3} • ; • ; Multi-Instrument/Spacecraft 27

  28. Recompute ESA mom’s, using reworked sc_pot [4] • ; • ; Plot 'em • ; • store_data,'the_N_combo',data='the_psif_density_int the_peir_density_norm the_ptim_density_new' • store_data,'the_P_combo',data='the_psif_pressure_int the_peir_pressure_norm the_ptim_pressure_new' • ylim,'the_p???_pressure_*',1.e-5,1.e-5,1 • store_data,'the_pxix_en_eflux',data='the_psif_en_eflux the_peir_en_eflux' • ylim,'the_pxix_en_eflux',3.,3.e6,1 • zlim,'the_pxix_en_eflux',50,1.e7,1 • store_data,'the_peer_en_eflux_pot',data='the_peer_en_eflux the_pxxm_pot1' • ylim,'the_peer_en_eflux_pot',5.,3.e4,1 • ; • tplot,'the_N_combo the_peir_velocity_norm the_ptim_velocity_new the_P_combo the_pxix_en_eflux the_peer_en_eflux_pot' • ; Multi-Instrument/Spacecraft 28

  29. Multi-Instrument/Spacecraft 29

  30. Compare E-field with EFI and compute Ptotal • ; Introduce B & E field; compute Ez from E*B=0 • ; • thm_load_fit,probe=sc,coord='dsl',suff='_dsl' • get_data,'the_efs_0',data=the_efs_0 • i2average=where((the_efs_0.x gt time_double('2008-02-26/04:45:00')) and $ • the_efs_0.x lt time_double('2008-02-26/04:48:00'),iany) • print,'this is the estimated Exoffset: ', average(the_efs_0.y(i2average,0)) • print,'this is the estimated Eyoffset: ', average(the_efs_0.y(i2average,1)) • Exoffset=-1.02249 • Eyoffset=0.00233 • ; • angle=10. ; degrees • tanangle=tan(angle*!PI/180.) • get_data,'th'+sc+'_efs_0',data=thx_efs_dsl • get_data,'th'+sc+'_fgs',data=thx_fgs_dsl • igood=where(abs(thx_fgs_dsl.y(*,2)/sqrt(thx_fgs_dsl.y(*,0)^2+thx_fgs_dsl.y(*,1)^2)) ge tanangle,janygood) • ibad=where(abs(thx_fgs_dsl.y(*,2)/sqrt(thx_fgs_dsl.y(*,0)^2+thx_fgs_dsl.y(*,1)^2)) lt tanangle,janybad) • thx_efs_dsl.y(*,0)=thx_efs_dsl.y(*,0)-Exoffset & thx_efs_dsl.y(*,1)=thx_efs_dsl.y(*,1)-Eyoffset • thx_efs_dot0_dsl=thx_efs_dsl • ; • if (janybad ge 1) then thx_efs_dot0_dsl.y(ibad,*)=!VALUES.F_NAN • if (janygood lt 1) then print,'*****WARNING: NO GOOD 3D ExB data' • if (janygood ge 1) then thx_efs_dot0_dsl.y(igood,2)= -(thx_efs_dsl.y(igood,0)*thx_fgs_dsl.y(igood,0)+$ • thx_efs_dsl.y(igood,1)*thx_fgs_dsl.y(igood,1)+ thx_efs_dsl.y(igood,2)*thx_fgs_dsl.y(igood,2))/ thx_fgs_dsl.y(igood,2) • ; • thx_exb_dot0_dsl=thx_efs_dot0_dsl • store_data,'th'+sc+'_efs_dot0_dsl',data={x:thx_efs_dot0_dsl.x,y:thx_efs_dot0_dsl.y} • options,'th'+sc+'_efs_dot0_dsl','colors',[2,4,6]; Multi-Instrument/Spacecraft 30

  31. Compare E-field with EFI • ; Produce E from Vi x B, to compare • ; • tinterpol_mxn,'the_fgs','the_peir_density_norm',suff='_int' ; get same time res. • tcrossp,'th'+sc+'_ptim_velocity_new','th'+sc+'_fgs_int',newname='the_Evxb_dsl_temp' • calc,'"the_Evxb_dsl" = -0.001*"the_Evxb_dsl_temp"' • options,'the_Evxb_dsl',colors=[2,4,6] & ylim,'the_Evxb_dsl the_efs_dot0_dsl',-20,20,0 • ; • tplot,'the_fgs_int the_Evxb_dsl the_efs_dot0_dsl the_N_combo the_ptim_velocity_new the_P_combo the_pxix_en_eflux the_peer_en_eflux_pot' • ; • ; Add total ion, electron and magnetic pressure to create total pressure • ; • calc,'"the_Pi" = (0.1602/1000.) * "the_ptim_pressure_new"' ; ESA+SST ions in nPa • calc,'"the_Pe" = (0.1602/1000.) * "the_peer_pressure_norm"'; ESA electrons in nPa • tinterpol_mxn,'the_fgs_dsl','the_peir_density_norm',suff='_int' ; on common time • tvectot,'the_fgs_dsl_int',tot='the_fgs_mag' • calc,'"the_Pb" = (0.01/25.132741) * "the_fgs_mag" * "the_fgs_mag" ' ; Pb in nPa • ; • calc,'"the_Pt" = "the_Pi" + "the_Pe" + "the_Pb" ' ; Ptotal in nPa • ; • store_data,'the_Pall',data='the_Pi the_Pe the_Pb the_Pt' ; single variable to plot • ylim,'the_P? the_Pall',0.005,1,1 • ; • tplot,'the_fgs_int the_Evxb_dsl the_efs_dot0_dsl the_N_combo the_ptim_velocity_new the_P_combo the_Pall the_pxix_en_eflux the_peer_en_eflux_pot' • ; Multi-Instrument/Spacecraft 31

  32. Multi-Instrument/Spacecraft 32

  33. February 16, 2008 event: Moments computation after SST cleanup Multi-Instrument/Spacecraft 33

  34. February 16, 2008 event: ExB comparison Multi-Instrument/Spacecraft 34

More Related