90 likes | 252 Vues
Explore the mathematical representation of monochromatic images, digital image processing steps, and the importance of image processing in problem domains. This guide covers image acquisition, preprocessing, segmentation, and enhancement techniques, such as inverse filtering, Wiener filtering, spatial filtering, and point processing using intensity transformations.
E N D
Plan • What is an image? • Mathematical representation of monochromatic images • What is a digital image? • Digital image processing • Fundamental steps • Why do we need this?
column f(x, y) row y x Images Sample Quantize
Digital Image y x Gray Level f(x,y)
Fundamental Steps* Representation & Description Preprocessing Segmentation Knowledge Base Problem Domain Image Acquisition Recognition & Interpretation Result *Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Addison-Wesley, 1992
DIP: Course Logistics http://faculty.petra.ac.id/resmana
Image Preprocessing Restoration Enhancement • Inverse filtering • Wiener filtering Spectral Domain Spatial Domain • Filtering • >>fft2/ifft2 • >>fftshift • Point Processing • >>imadjust • >>histeq • Spatial filtering • >>filter2
Point Processing(Intensity Transformation) s(x,y) = T{ r(x,y)} Transformed Gray Level Original Gray Level Transformation Function >>imadjdemo >>imadjust