1 / 15

4203 Mathematical Probability Chapter 2: Probability

Instructor: Dr. Ayona Chatterjee Spring 2011. 4203 Mathematical Probability Chapter 2: Probability . Classical Probability concept.

gerald
Télécharger la présentation

4203 Mathematical Probability Chapter 2: Probability

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Instructor: Dr. AyonaChatterjee Spring 2011 4203 Mathematical ProbabilityChapter 2: Probability

  2. Classical Probability concept • If there are N equally likely possibilities of which one must occur and n are regarded as favorable, or as a success, then the probability of success is given by the ration n/N. • Example: Probability of drawing a red card from a pack of cards = 26/52 = 0.5.

  3. Probability • Measures the likeliness of an outcome of an experiment. • The probability of an event is the proportion of the time that events of the same kind will occur in the long run. • Is a number between 0 and 1, with 0 and 1 included. • Probability of an event A is the ratio of favorable outcomes to event A to the total possible outcomes of that experiment.

  4. Some Definitions • An experiment is the process by which an observation or measurement is made. • When an experiment is preformed it can result in one or more outcomes which are called events. • A sample space associated with an experiment is the set containing all possible outcomes of that experiment. It is denoted by S. • Elements of the sample space are called sample points.

  5. Sample spaces • Can be • Finite (toss a coin) • Countable (toss a coin till the first head appears) • Discrete (toss a coin) • Continuous (weight of a coin)

  6. Example • A manufacturer has five seemingly identical computer terminals available for shipping. Unknown to her, two of the five are defective. A particular order calls for two of the terminals and is filled by randomly selecting two of the five that are available. • List the sample space for this experiment. • Let A denote the event that the order is filled with two nondefective terminals. List the sample points in A.

  7. Venn Diagram • Graphical representation of sets. • A’ is complement of event A.

  8. Probability of an Event • POSTULATE 1: The probability of an event is a nonnegative real number that is P(A)>=0 for any subset A of S. • POSTULATE 2: P(S) = 1. • POSTULATE 3: If A1, A2, ….is a finite or infinite sequence of mutually exclusive events of S then P(A1 U A2 U…..)=P(A1 )+P(A2 )+……..

  9. Mutually exclusive events • Two events A and B are said to be mutually exclusive if there are no elements common to the two sets. The intersection of the two sets is empty.

  10. Rules of Probability • If A and A’ are complementary events in a sample space S, then P(A’)=1-P(A). Thus P(S) = 1. • P(Φ) = 0, probability of an empty set = 0. • If A and B are events in a sample space S and A is subset B the P(A) < =P(B). • If A and B are any two events in a sample space then P(A U B) = P(A)+P(B) – P(A B).

  11. Conditional Probability • The conditional probability of an event A, given that an event B has occurred, is equal to • Provided P(B) > 0. • Theorem: If A and B are any two events in a sample space S and P(A)≠0, then

  12. Independent Events • Two events A and B are independent if and only if • If A and B are independent then A and B’ are also independent.

  13. Example • A coin is tossed three times. If A is the event that a head occurs on each of the first two tosses, B is the event that a tail occurs on the thrid toss and C is the event that exactly two tails occur in the three tosses, show that • Events A and B are independent. • Events B and C are dependent.

  14. Bayes Theorem • If B1, B2, …., and Bk constitute a partition of the sample space S and P(Bi) ≠0, for i=1, 2, …., k, then for any event A in S such that P(A) ≠0

  15. Reliability of a product • The reliability of a product is the probability that it will function within specified limits for a specific period of time under specified environmental conditions. • The reliability of a series system consisting of n independent components is given by • The reliability of a parallel system consisting of n independent components is given by • Ri is the reliability of the ith component.

More Related