1 / 1

AURINGON TUTKIMUS AMS-SPEKTROMETRILLÄ

AURINGON TUTKIMUS AMS-SPEKTROMETRILLÄ FINNISH CONSORTIUM FOR SOLAR RESEARCH WITH ALPHA MAGNETIC SPECTROMETER ON INTERNATIONAL SPACE STATION Space Research Laboratory Sodankylä Geophysical Observatory

gerodi
Télécharger la présentation

AURINGON TUTKIMUS AMS-SPEKTROMETRILLÄ

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. AURINGON TUTKIMUS AMS-SPEKTROMETRILLÄ FINNISH CONSORTIUM FOR SOLAR RESEARCH WITH ALPHA MAGNETICSPECTROMETER ON INTERNATIONAL SPACE STATION Space Research Laboratory Sodankylä Geophysical Observatory University of Turku University of Oulu ABSTRACT The project is aimed at investigating the poorly understood origin of relativistic solar particles. The Alpha Magnetic Spectrometer (AMS) on the International Space Station (ISS) makes possible the precise direct measurement of these particles in space for the first time. The very large collecting power of AMS combined with an operational energy range extending to very high energies with excellent ion identification capabilities makes AMS an exceptional instrument. Many observations indicate that the widely accepted hypothesis explaining the origin of solar particle events by simply dividing them in two classes corresponding to solar flares and interplanetary shock waves is not a sufficient explanation. The sources of relativistic particles may differ from those of the lower energy ones. To investigate the acceleration mechanisms of relativistic solar particles, AMS observations are combined with those of the ERNE instrument on the Solar and Heliospheric Observatory (SOHO) spacecraft, with observations of the world-wide network of neutron monitors and with measurements of electromagnetic radiation at various wavelengths. AURINGON TUTKIMUS AMS-SPEKTROMETRILLÄ KANSAINVÄLISELLÄ AVARUUSASEMALLA Tutkimme Auringon relativististen hiukkasten alkuperää, jota ei toistaiseksi ymmärretä. AMS (Alpha Magnetic Spectrometer) tarjoaa ensimmäisen kerran mahdollisuuden näiden hiukkasten suoraan mittaamiseen avaruudessa. AMS:n suuri hiukkasten keräyskyky ja tarkka, suuriin energioihin yltävä toiminta-alue yhdistettynä erinomaiseen hiukkasten tunnistamiskykyyn tekevät AMS:ista täysin poikkeuksellisen Auringon hiukkasten tutkimuslaitteen. Monet havainnot viittaavat siihen, että nykyään laajalti hyväksytty Auringon hiukkapurkausten luokittelu ei ole riittävä. Relativistisen energia-alueen hiukkasten lähteet voivat olla erilaiset verrattuna pienienergiaisempien hiukkasten lähteisiin. Relativististen hiukkasten kiihdytysmekanismien ymmärtämiseksi yhdistämme AMS:n havainnot Turun yliopiston SOHO/ERNE-instrumentin havaintoihin, maailmanlaajuisen neutronimonitoriverkoston havaintoihin sekä eri aallonpituuksilla tehtäviin sähkömagneettisen säteilyn mittauksiin. AMS particle instrument on International Space Station SPACE WEATHER: Effect of coronal mass ejections AMS The newly-installed Alpha Magnetic Spectrometer-2 (AMS). NASA astronauts A. Feustel and G. Chamitoff (space shuttle STS-134 mission) appear tiny when compared to their surroundings during the mission's first spacewalk outside the International Space Station on May 20, 2011. Solar coronal mass ejections (CMEs) and their associated high-energy particles can harm astronauts and instrumentations in space. CMEs can also impact the Earth's magnetosphere and create colorful aurora. Energy of solar particles to be investigated ___by AMS is much higher than energy of particles visualized by the aurora. Solar eruptions and major solar energetic particle events SEPs: protons SOHO/ERNE SEP event of September 24,1997 THE CORE TEAM IN FINLAND Prof. Eino Valtonen, consortium leader, University of Turku Prof. Ilya Usoskin, sub-project PI, University of Oulu Prof. Leon Kocharov, SGO, University of Oulu Dr. Markus Battarbee, SRL, University of Turku MSc Esa Riihonen, SRL, University of Turku MSc Timo Eronen, SRL, University of Turku MAIN COLLABORATORS ABROAD INFN & Perugia University, Perugia, ITALY NASA Goddard Space Flight Center, Greenbelt, MD, U.S.A. California Institute of Technology, Pasadena, U.S.A. Lockheed Martin, Palo Alto, California, U.S.A. Max-Planck Institut für Sonnensystemforschung, Katlenburg-Lindau, GERMANY Christian-Albrechts-Universität Kiel, GERMANY Observatoire de Paris, Meudon, FRANCE Korea Astronomy and Space Science Institute, Daejeon, KOREA J. Torsti, L. Kocharov, M. Teittinen, and B. J. Thompson (1999) Astrophysical J., 510, 460. L. Kocharov, M. J. Reiner, A. Klassen, B. J. Thompson, and E. Valtonen, (2010) Astrophysical J, 725, 2262. Coronal wave Interplanetary magnetic field (IMF) line Solar flares and coronal mass ejections can trigger both global coronal waves (Moreton waves) on the Sun and CME-driven shock waves in the interplanetary medium. Both of them may be responsible for emission of high-energy protons, helium and other ions affecting the Earth’s space environment. The ERNE particle instrument on Solar and Heliospheric Observatory spacecraft can detect particles in the ~1-100 MeV energy range. The new AMS instrument on International Space Station enables high-resolution measurements at much higher energies, up to ~1000 MeV and beyond. Thus, the explored energy range extends now through high-energy limit of the solar particle spectrum. CME Solar energetic particles (SEPs) AMS is an international collaboration of 16 countries and more than 60 institutes, led by Nobel-prize winner professor Samuel C. C. Ting. ISS

More Related