1 / 7

第二週課程

第二週課程. y=f(x) 為函數關係 ( 有 1 對 1 及多對 1 兩種情況 ) 例: y=sinx  函數 y=3  函數 x=2  非函數 ( 給 1 個 x 對應多個 y) 由 1 項或多項未知函數 y(x) 的導數及函數所構成之方程式稱為常微分方程式。. 線性 O.D.E. 非線性 O.D.E. 例. 分離變數法. f(x,y)y ' =c f(x)g(y) y ' =c 又 y ' =dy/dx g(y)*dy=f(x)*dx 兩邊同時積分可得微分方程式的解 ※ 微分方程式的解為函數. 例題講解 :.

giza
Télécharger la présentation

第二週課程

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 第二週課程 • y=f(x)為函數關係(有1對1及多對1兩種情況) 例:y=sinx 函數 y=3 函數 x=2 非函數(給1個x對應多個y) • 由1項或多項未知函數y(x)的導數及函數所構成之方程式稱為常微分方程式。

  2. 線性 O.D.E. • 非線性O.D.E. 例

  3. 分離變數法 f(x,y)y'=c f(x)g(y) y'=c 又y'=dy/dx g(y)*dy=f(x)*dx 兩邊同時積分可得微分方程式的解 ※微分方程式的解為函數

  4. 例題講解:

  5. EX:dx+xy dy=y2dx+ydy

  6. 例21:(x+y)2dx=dy

More Related