1 / 60

Partners for Mathematics Learning

Explore fluency with facts and operations, equipartitioning, problem solving, and professional reading in this module. Learn different problem types and strategies for reaching 25.

Télécharger la présentation

Partners for Mathematics Learning

E N D

Presentation Transcript

1. 1 PARTNERS forMathematicsLearning Grade1 Module6 Partners forMathematicsLearning

2. 2 OverviewofSession Fluencywithfactsand operations Equipartitioning Problemsolving Professionalreading Problemtypes Partners forMathematicsLearning

3. 3 Getto25 Startat0;firstperson enters1,2,3,4,or5 Secondpersonmayadd1,2,3,4,or5 ONLYifthenumberis(a)notshowingin thedisplayor(b)isnotthesumofthe digitsinthedisplaywindow Taketurnsaddingnumbers Winneristhepersonwhoreaches25 Partners forMathematicsLearning

4. 4 Getto25 Doesitmatterwhogoes firstinthegame? Isthereanumbertoavoid? Isthereanumbertotrytoreach? Whatstrategiesdidyouuseintryingto reach25? Partners forMathematicsLearning

5. 5 BigIdeainNumber:Fluency Fluency(accuracy,efficiency,flexibility)is reasoningaboutandusingrational numberoperationswithunderstanding Fluencyinvolvesknowingstrategiesfor retrievingbasicfactsandbeingabletoapply theminothercomputations Fluencyisbuiltuponnumberrelationships, placevalue,properties,andoperation understandings forMathematicsLearning

6. 6 FluencywithNumberRelationships Magnitudeofnumbers:64isgreaterthan63 Onemorethananynumberisthenextcounting number:49+1issimilartocounting49,50 Onelessthananynumberistheprevious countingnumber:49-1isknowingthat48 comesbefore49 Countingbyconsistentgroups(ex.3’sor5’s) tonamethemultiplesofthatnumber Partners forMathematicsLearning

7. 7 Fluency:KeyBehaviors Studentswhoarefluentusenumberfacts withoutbeingprompted Flexibility:3+4hasthesamesumas4+3 Efficiently:4+5is4+4+1(not4+1+1+1+1=1) Accurately:8-5=4can’tberightbecause4+4=8) Knowledgeofsumsto10 iscriticalforsuccesswith additionandsubtractionof multi-digitnumbers Partners forMathematicsLearning

8. 8 DevelopingFluencyinClassroom ConstanceKamii’sresearchonlearning numbercombinationsfoundthat1stgrade studentsdemonstrated 55%AccuracyintheMemorizationClass 76%AccuracyintheRelational ThinkingClass Partners forMathematicsLearning

10. 10 HowManyObjectsDoYouSee? Partners forMathematicsLearning

11. 11 HowCouldYouSolveThis? Isolveditthisway…..Iknewthat4+4=8 4+3+4+2= 8 ThenIaddedthe2tothe8toget10 8+3+2= 10 So10+3is13andthat’stheanswer! 10+3=13 Partners forMathematicsLearning

12. 12 DropandDecide Viewhandoutworksheets Oncestudentsunderstandformat,use sheetsmultipletimesfordifferenttarget numbers GrabBag Concretetosymbolicinaworksheet Multipleaddendspresentaunique challengeforsomestudents Partners forMathematicsLearning

13. 13 SpinningMoreorLess Partners forMathematicsLearning

14. 14 TenTurnsRolling Reviewhandout Twostudentsshareapairofdice Eachstudentmayhaveaworksheetor studentsmayshare Studentscanverifysums Roll,record,andadd Howcouldtheactivitybeusedinacenter? Partners forMathematicsLearning

15. 15 6 KnowIt!ShowIt! 3 Ingroupsofthree,read throughthehandoutandmakecertain everyoneunderstandsthedirections Playthreeorfourrounds,exchangingroles When,duringtheyear,mightyouhave studentsreadytoplaythisgame? Partners forMathematicsLearning

16. 16 RelationalThinking 12-7= 7+__=12 9+5=10+4 Partners forMathematicsLearning

17. 17 NumberTalks… Areclassconversationsaboutarithmetic problemsanddiscussionsthatcritique solutionstrategies Areworkdonementallywithminimum writingtorecordstrategies Helpstudentslearnbasicfactsthrough reasoninganddiscussion(notisolateddrill) Havestudentsusereasoningtodetermine ifastrategyiseffective Partners forMathematicsLearning

18. 18 78+95 …NumberTalks Provideopportunitiesforchildrentoshare howtheythinkaboutnumbers Increasefluencyinoperationswithsmall numbersinordertoincreasefluencywith largenumbers Canbeadaptedforanygroup 801-347 26x52 Partners forMathematicsLearning

19. 19 NumberTalks:StudentDirections Solvetheprobleminyourhead Putyourthumbupinfrontofyourchest whenyouhaveasolution Trytosolveinadifferentway Foreachdifferentsolution,putupanother finger Shareyoursolutionswithyourpartner Partners forMathematicsLearning

20. 20 What’sMyNumber? Guessthesecretnumberonanumberline Ifguessistoobig,thelargetriangleisplaced abovetheguess Iftheguessistoosmall,thesmallertriangle isplacedabovethenumber Whatdoyouknowaboutnumbersbetween? 012345678910 Partners forMathematicsLearning

21. 21 TryThisOne… 4243444546474849 Partners forMathematicsLearning

22. 22 NumberoftheDay 6+6 5+5+1+1 dozen 12 dimeand 2pennies 13-1 7+5 Partners forMathematicsLearning

23. 23 MeaningfulFactStrategies One-more-thanandtwo-more-than Countinguporcountingback Factswithzero Doublesandneardoubles Maketenfacts Factfamilies part-part Commutativepropertywhole Compensation Partners forMathematicsLearning        

25. 26 AssessmentIsKey Determiningeachstudent’sunderstanding ofnumbercombinations Knowingwhichfactseachchildhasnotyet learnedandreassessingweeklytoencourage studentstomoveon Helpingstudentstake responsibilityfor learningfacts Informingparents withspecifics Partners forMathematicsLearning

26. 28 HowDoYouRecognizeFluency? Talkwithapartneraboutnumberfluency in1stgrade Whatdostudentsdothatletsyouknowthey havenumberfluency? Whatdostudentsdothatlets youknowtheydonothave numberfluency? Howdoyoukeeptrack? Partners forMathematicsLearning

28. 30 FairSharesforTwo FairSharesforJulieandJennifer ReferbacktoliteraturebookJustLikeMe Discusshowsisterssharedthings Whathappenedtothe“leftovers”? WhichnumberscouldJulieand Jennifersharefairly? Partners forMathematicsLearning

29. 31 BumpyorNotBumpy Cutoutthetwo-columncards Whatcanyoutellaboutthepieces? Howcanyouorganizethesepieces? Orderpieces Sortthepiecesintotwogroups;givetherule Determineifyournumbersareorarenot bumpy Howdoyouknow? Partners forMathematicsLearning

31. 33 “SenseofBalance” Eachshapehasauniquewhole numberweightmorethan0 Differentshapeshavedifferent weights;identicalshapeshavesameweights Thesizeofshapesisnotrelatedtoweight Ashapehangingdirectlybelowthefulcrumdoes notaffectthebalanceofarmstoleftorrightofthe fulcrum Distancefromfulcrumdoesnotaffectweight Partners forMathematicsLearning

32. 34 “SenseofBalance” Totalweightis32units Eachshapeweighslessthan10units Partners forMathematicsLearning

33. 35 “SenseofBalance” Whatamounts(24,25,26)couldnot bethetotalweightforthispuzzle? Howdoyouknow? Partners forMathematicsLearning

34. 36 Equipartitioning Equipartitioningreferstodividingawhole intoequalpartsormakingfairshares Childrenoftenbegintothinkofpartitioning intermsofsharingwithfriendsandeach gettingthesameamount Partners forMathematicsLearning

35. 37 PaperFolding–Part1 Howmanytimesdoyouthinkyoucanfold thepattypaperinhalf? Howmanyequalpartswouldbecreated withthenumberoffoldsyoupredicted? Explainyourreasoning Beginfolding! Recordthetotalnumber offoldsandthenumberofpartscreated Partners forMathematicsLearning

36. 38 Equipartitioning-Part2 Whatwouldhappenifyoufoldedinthirds eachtimeinsteadofhalves? Whatwouldhappenifyoufoldedthepaper inhalfandtheninthirds? Howmanydifferentwayscouldyoufolda pieceofpapertocreate24equalparts? Whichwayusestheleastnumberoffolds? Thegreatest? Partners forMathematicsLearning

37. 39 Fair“Sharing” Wereeveryone’sfoldsthesame? Whatsimilaritiesanddifferencesarethere inthehalffoldsandthethirdfolds? Ifyouhavelargerpaper,could youfolditinhalfmoretimes thanyoucanfoldsmallpaper? Partners forMathematicsLearning

38. 40 Equipartitioning LookattheEssentialStandardthatrelates toequipartitioning Whatexpectationsdotheclarifyingobjectives identify? Whatcanyoulearnfromtheassessment prototypes? Whataspectsofthisstandardarenewfor yourclassroom? Partners forMathematicsLearning

39. 41 Equipartitioning Noticehowspatialreasoning,equality, measurement,andnumbercometogether inthisstandard Languageassociatedwithdivisionand fractionsareneededindiscussingthis standard,butfraction(symbolic)notationis NOTthepurpose Partners forMathematicsLearning

40. 42 ProblemBasedLessons Researchhasindicatedthat beginningwithproblem situationsyieldsgreater problem-solvingcompetence andequalorbetter computationalcompetence forMathematicsLearning

41. 43 BasicStructureofProblems AccordingtoCGI,therearefourbasic structuresforproblems,regardlessofthe magnitudeofnumbers JoinProblems SeparateProblems Part-Part-WholeProblems CompareProblems Recognizingtheproblemstructuresand identifyingonesthatseemtobemore difficultforstudentsishelpfulinplanning forMathematicsLearning