1 / 30

E(r)

The problem of how to make H 2 in Space. E(r). H … H. r (H-H) . H + H. E(r). H … H. r (H-H) . H + H. E(r). Chemical Energies. H … H. r (H-H) . H 2. H + H. E(r). Chemical Energies. H … H. r (H-H) . D. H 2. H + H. E(r). Chemical Energies. H … H. r (H-H) .

guitierrezj
Télécharger la présentation

E(r)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The problem of how to make H2 in Space E(r) H…H r (H-H) 

  2. H + H E(r) H…H r (H-H) 

  3. H + H E(r) Chemical Energies H…H r (H-H) 

  4. H2 H + H E(r) Chemical Energies H…H r (H-H) 

  5. D H2 H + H E(r) Chemical Energies H…H r (H-H) 

  6. Nuclear Energies D H2 H + H E(r) Chemical Energies H…H r (H-H) 

  7. To take away the excess energy there must be a 3-Body collision during the lifetime of the H…H collision complex ca 10-13 s H2 E(r) H…H r (H-H) 

  8. A A A A G G G G H HHHHHHHHHHHHHHH E(r) H…..H H–H r (H-H) 

  9. Total energy must be conserved and in a plant at snooker or billiards the blue ball takes away the energy and the white and red can thus remain in contact after collision

  10. H2 H2 H2+  H3+ + e- + H

  11. 3 body collision t3B = 1023/ n2 yrs t3B = 1023/ 12 yrs Harry Kroto 2004

  12. 2-body collisions t2B = 103/n yrs A + B  AB*  A + B Harry Kroto 2004

  13. H2 H2 H2+  H3+ + e- + H

  14. NB At NTP gas-phase reactions are 3-body processes

  15. 3 body collision t3B = 1023/ n2 yrs

  16. 3 body collision t3B = 1023/ n2 yrs = 3x107x1023 /(1018)2 = 3x10-6 Harry Kroto 2004

  17. 3 body collision t3B = 1023/ n2 yrs A + B + M  [MAB]  AB + M Harry Kroto 2004

  18. 3 body collision t3B = 1023/ n2 yrs A + B + M  [MAB]  AB + M t(BIG U)~ 1010 yrs Harry Kroto 2004

  19. 3 body collision t3B = 1023/ n2 yrs A + B + M  [MAB]  AB + M t(BIG U)~ 1010 yrs n = atoms or mols per cm3 Harry Kroto 2004

  20. 3 body collision t3B = 1023/ n2 yrs Harry Kroto 2004

  21. 2-body collisions t2B = 103/n yrs (3x107)x103/1018 = 3x10-8 Harry Kroto 2004

  22. 3 body collision t3B = 1023/ n2 yrs t3B = 1023/ 12 yrs t3B = 1023/ (1018)2 yrs = 1023/ (1018)2 Harry Kroto 2004

  23. The problem of how to make H2 in Space 3-Body collision during the lifetime of the collision complex ca 10-13 s E(r) H…H H…H r (H-H)  Harry Kroto 2004

  24. E(r) H + H r  H2 Harry Kroto 2004

  25. The problem of how to make H2 in Space 3 Body collision during the lifetime of the collision complex ca 10-13 s E(r) H……..H r  Harry Kroto 2004

  26. E(r) H...H r  Harry Kroto 2004

  27. Lifetimes (in yrs) Photo dissociation tPD = 103AB + h A + B 2-body collision t2B = 103/n A + B  AB*  A + B Radiative assocn tRA = 109/n A + B  AB*  AB + h Grain catalysis tGC = 109/n A + B + Gr  AB + Gr 3 body collision t3B = 1023/ n2 A + B + M  MAB  AB + M t(BIG U) = 1010 yrs n = atoms/mols per cm3

  28. The problem of how to make H2 in Space E(r) A A A A G G G G H H H...H r  Harry Kroto 2004

More Related