1 / 21

G. Kaupp, M. R. Naimi-Jamal Powerpoint Presentation, ECM22 Budapest, August 26-31, 2004

G. Kaupp, M. R. Naimi-Jamal Powerpoint Presentation, ECM22 Budapest, August 26-31, 2004. G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004. G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004. Al-Berkovich.

gunda
Télécharger la présentation

G. Kaupp, M. R. Naimi-Jamal Powerpoint Presentation, ECM22 Budapest, August 26-31, 2004

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. G. Kaupp, M. R. Naimi-Jamal Powerpoint Presentation, ECM22 Budapest, August 26-31, 2004

  2. G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004

  3. G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004

  4. Al-Berkovich loading: FN = k h3/2 k [µN/nm3/2] = indentation coefficient G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004

  5. The relation of normal force and normal displacement FN = k·h3/2 (k [µN/nm3/2] = indentation coefficient) G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004

  6. Crystalline SiO2 and SrTiO3 trigonal a-quartz monoclinic coesite (>2.2 GPa) tetragonal stishovite (>8.2 GPa) cubic SrTiO3(Pm-3m); tetragonal (I4/mcm) ? G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004

  7. Anthracene, coefficients and work of indentation G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004

  8. Isotropic and anisotropic indentation responce Far-reaching phenomena with crystals G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004

  9. Face anisotropy in nanoindentations G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004

  10. Appearances of nanoscratches by AFM Z range 50 nm ramp experiment constant normal force G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004

  11. normal force (µN) (normal force)1.5 (µN1.5) (normal force)2 (µN2) (a) (b) (c) The relation of lateral force and (fixed) normal force FL = K·FN3/2 (K = scratch coefficient [N-1/2]) The value for the lateral force gives the scratch work [µNµm] for 1 µm scratch length Fused quartz and cube corner indentation tip, edge in front Linear plot through the origin only with exponent 1.5 (not 1 or 2) G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004

  12. y = 0,0047x + 3,8443 1 1 300 y = 0,0071x 2 - 61,218 2 200 lateral force (µN) 100 (a) 0 0 20000 40000 60000 (b) 200 1.5 1.5 (normal force) (µN ) y = 0,0001x + 33,419 160 120 lateral force (µN) 200 80 y = 0,0048x + 13,571 160 40 120 0 lateral force (µN) 0 250000 500000 750000 1000000 80 2 2 (d) (normal force) (µN ) 40 0 0 10000 20000 30000 40000 (normal force)1.5 (µN1.5) acceptable (c) invalid The relation of lateral force and (fixed) normal force SrTiO3 (100), 0°, cube corner edge in front exponent 1.5 (not 1 or 2) the steep line in (b) corresponds to phase transformed SrTiO3 G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004

  13. Angular and facial dependence of specific scratch work on strontium titanateat different normal loads (WSc, spec = FL.1 [µNµm]) G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004

  14. Angular dependence of specific scratch work on (1-100) of a-quartz and crystal packing spec.WSc = FL.1 [µNµm] = work for 1 µm scratch length of the indented tip (1-100), scratch work per µm scratch length (FN=1482 µN): Angle µNµm 90° 206 45° 223 0° 225 c-direction: alternation of 0.5405nm Si-Si rows; the other directions are less distant and the skew (10-11) cleavage plane is cutting in c-direction G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004

  15. Molecular migrations under (110) of thiohydantoin (a) 0° (c) 180° (d) 270° (b) 90° (P21/c) G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004

  16. Reason for the orientational specifity on (110) of thiohydantoin cleavage planes between steep (66°) monolayers Geometric model for the understanding of the marked anisotropies upon scratching over skew cleavage planes in four orthogonal directions In all directions: FL = K.FN3/2 is valid G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004

  17. Nanoscratching of anthracene on (110) (110) on top G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004

  18. Nanoscratching on the layers (001) on top anthracene ramp nanoscratching at 0-150 µN on (001) G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004

  19. Tetraphenylethene (P21) on (10-1) Poorvertical (010) cleavage planes between monolayers of bulky molecules G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004

  20. Nanoscratching along the polar axis of ninhydrin edge in front 180° (P21) 180° side in front 180° Cube corner scratches on ninhydrin (110) along the polar axis G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004

  21. Thiourea, anisotropic nanoscratching on (100) b a (100) c (image rotated by 10° around x and y) (Pbnm) a) along [010] (b) b) along [001] (c) ramp nanoscratching at 0-150 µN G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004

More Related