360 likes | 478 Vues
Prokaryota. Eukaryota. Oxygen increasing. The geological ocurrence of what are presumed to be blue-green algae and other prokaryotes, compared with eukaryotes. Nixon Bahamón Marine ecology. REDFIELD RATIOS * REDFIELD et al, 1963 : Basic global ratio of remineralization
E N D
Prokaryota Eukaryota Oxygen increasing The geological ocurrence of what are presumed to be blue-green algae and other prokaryotes, compared with eukaryotes Nixon Bahamón Marine ecology
REDFIELD RATIOS • * REDFIELD et al, 1963: Basic global ratio of remineralization • [P] : [N] : [C] : -[O2] = 1 : 15 : 106 : - 138 • (CH2O)106 (NH3)16 H3PO4+138 O2 106 CO2+16 HNO3+H3PO4+122 H2O • * BROECKER et at (1985) : Provide evidence that the ratio of oxygen consumption to phosphate production is nearly uniform with location and epth in the sea with a value of 175 • * KÖRTZINGER et al (2001): The carbon Redfield ratio of remineralization has been complicated by the fact that anthropogenic CO2 has penetrated the thermocline in most parts of the world ocean (and even deeper in the North Atlantic). Nixon Bahamón Marine ecology
REDFIELD RATIOS * KÖRTZINGER et al (2001) (cont.) Because od the thermocline is also the depth regime where most of the biological remineralization signal is found, approaches to estimate Redfield carbon ratios from nutrient and oxygen data are, in most cases, are subject to an anthropogenic bias. By correcting concentrations of dissolved inorganic carbon to preanthropogenic conditions, using reasonable estimates of the anthropogenic CO2 content, we were able top remove this source of errror. The corrections caused significant changes in all carbon ratios. New estimates of Redfield ratios of remineralization are [P] : [N] : [C] : -[O2] = 1-34±0.06 : 17.5±2 : 123±10 : - 165±15 Nixon Bahamón Marine ecology
Nixon Bahamón Marine ecology
Determinación del OD por tritación de Winkler • Estima los niveles de oxígeno disuelto en agua de mar entre 0 - 400 µmol kg-1 • NOTA. Adaptar método para valores más altos. En aguas frías con florecimientos algales el oxígeno puede subir aprox. 500 µmol kg-1. Ver protocolos WOCE, JGOFS. • Principio • El OD en una muestra de agua se utiliza para oxidar cuantitativamente el ion yoduro (a yodo) en presencia de una solución alcalina de ion manganeso (II) • La cantidad de yodo generada se mide por tritación con tiosulfato, determinando el punto final por método fotorimétrico, potenciométrico Nixon Bahamón Marine ecology
UTILIZACION APARENTE DE OXIGENO (AOU) • Se define como la diferencia entre la concentración de saturación del oxígeno disuelto a la temperatura potencial de la muestra de agua (O2sat, µmol kg-1) y la concentración de oxígeno medido en dicha muestra (O2, µmol kg-1). • AOU = O2sat - O2 med • Su consumo puede considerarse proporcional a la producción de nutrientes lo cual es util para estimacior el origen y ciclo del agua profunda Nixon Bahamón Marine ecology
PARAMETRO CONSERVATIVO "PO" (FOSFATO PREFORMADO)* • * (Broecker et al., 1985) • PO = PO40= PO4 - [(O2sat - O2)/ 138] = PO4 - (AOU /175) • O2sat = oxígeno disuelto en concentración saturada a la temperatura potencial de la muestra de agua • PO4 y O2 = concentración medida de PO4 y O2 • AOU = utilización aparente de oxígeno • * Otros trabajos relacionados con PO, NO, CO - Anderson & Sarmiento, 1994 (estequiometria basada en nutrientes) - Ríos et al., 1989 (... en estudios de fitoplancton) - Copin-Montegut et al, 1983 (... en material particulado) Nixon Bahamón Marine ecology
Oligotrophic vs. mesotrophic ecosystems Oligotrophic (e. g. Sargasso Sea; Bricaud et al, 1992; Li et al, 1992) • No dramatic seasonal changes in phytoplankton biomass; a moderate spring bloom • SCM around 120 m depth; about 80 m below thermocline • Nutrients depleted in surface • Thermal stratification • Irradiance and day length higher (subtropical) Mesotrophic (e.g. Baltic Sea; Kononen et al, 1999) • More conspicuous seasonal changes; spring bloom, cyanobacteria dominating • SCM around 10 m depth in the thermocline • Nutrient depleted in surface • Thermal and salinity stratification • Irradiance and day length lower (temperate) Nixon Bahamón Marine ecology
Autotrofos vs. Heterotrofos • Balance entre producción (fotosíntesis) y respiración = Producción Neta • Cuando la producción de carbono excede las pérdidas por respiración, ocurre una síntesis neta de carbono • Lo contrario representa una demanda neta que debe ser compensada por agentes alóctonos • Se “tiende” a considerar heterótrofos los ecosistemas oligotróficos (R>P). Esto además implica una fuente de CO2. • Los ecosistemas eutróficos pueden considerarse un sumidero de dióxido de carbono (P>R) • Ref.: del Giorgio et al 1997; Duarte & Agustí 1998 Nixon Bahamón Marine ecology
Turbulent transport of nitrogen • The turbulent advection and diffusion formulation • The Osborn (1980) model • The Gregg et al (1989) model modify by Granata et al (1995) • The Mellor-Yamada (1974) model • The mesoscale estimates of nitrogen fluxes. Nitrogen Flux equation. The Mediterranean Sea and subtropical North Atlantic case studies Nixon Bahamón Marine ecology
Figure 3. The map displays the composite of all Nimbus-7 Coastal Zone Color Scanner chlorophyll a data acquired between November 1978 and June 1986. Approximately 66,000 individual 2 minutes scenes were processed to produce this image. (Provided by NASA/GSFC). Nixon Bahamón Marine ecology
Estimación de la produccion primaria Basada en el modelo Clorofila-Irradianza, PP en mg C (mg Chl a h)-1 P(I)=Pm tanh ( I / Pm) – R Ec. (1) P (z) = P (z) * B (z) Ec. (2) Ec. (3) Ec. (4) I(z) =I(o)E –KZ Ec (5) Nixon Bahamón Marine ecology
Initial slope () Pmax NP Photosynthetic rate (P) GP + Compensation point 0 R Limitation Saturation Inhibition - Ic Ik Iopt Ii Irradiance (I, W m-2) Scheme of photosynthesis-light model Nixon Bahamón Marine ecology
Nixon Bahamón Marine ecology
Stommel´s simplified model of the deep circulation of the world ocean with source regions of Deep and Bottom Water in the North Atlantic and the Weddell Sea (From Ocean Circulation, Open Univ., 1989) Nixon Bahamón Marine ecology
Nixon Bahamón Marine ecology
AABW The global distribution of deep and botton water masses (between a depth of about 1500 m and the sea-floor). The sources are shown by dark tone. The fine dashed line is the 4000 m isobath (From Ocean circulation. Open University, 1989) Nixon Bahamón Marine ecology
The global surface current system. Cool currents are shown by dashed arrows; warm currents are shown by solid arrows. The map shows average conditions for winter months in the Northern Hemisphere; there are local differences in the summer, particularly in regions affected by monsoonal circulation (From Oc. Circ. O.U.) Nixon Bahamón Marine ecology
(From García and Gordon, 1992) Nixon Bahamón Marine ecology
Nixon Bahamón Marine ecology
Sections showing dissolved oxygen (ml l-1) in (a) the western Atlantic and (b) the Pacific about 170°W) Nixon Bahamón Marine ecology
Nixon Bahamón Marine ecology
Nixon Bahamón Marine ecology
Nixon Bahamón Marine ecology
Meridional cross-section of the Atlantic Ocean, showing movement of the major water sources. NADW has salinity greater than34.8. AAIW extending northward from the Antarctic Polar Frontal Zone overlies the more saline NADW. M indicate Mediterranean water. Water warmer than 10°C is shown in the upper part of the picture. AAIW is cooler than 0°C. Note maxima and minima of oxygen. Maxima correspond to the core regions of cold waters while the minima correspond roughly to boundaries between water masses. (From Ocean Circulation, 1989. Open University) Nixon Bahamón Marine ecology
1% Irradiance Schematic depiction of the oxygen mass balance in the upper ocean. P is photosynthesis and R respiration. The equation is generalized: nutrients are deleted and organic matter is represented as CH20 Nixon Bahamón Marine ecology
Nixon Bahamón Marine ecology
Nixon Bahamón Marine ecology
Nixon Bahamón Marine ecology
Nixon Bahamón Marine ecology
Nixon Bahamón Marine ecology
Nixon Bahamón Marine ecology
Fases para la implementación de un modelo numérico • Calibración • ¿Corresponden los datos observados con los estimados? El modelo reacciona como se espera? • Verificación • El modelo es estable a largo plazo? • El modelo obedece a la conservación de la masa? • Validación • Análisis de resultados, calidad de datos, fiabilidad • Análisis de sensibilidad • Sensibilidad a parámetros, factores forzantes y submodelos a las variables de estado. Margen de error. Nixon Bahamón Marine ecology
Modelos unidimensionales, promediando la capa de mezcla • Modelación del ciclo anual del plancton (Evans y Parslow, 1985; 1988) • Dos capas de mezcla (1=nutrientes + plancton; 2=nutrientes) • El segundo modelo incluye un segundo grupo de fitoplancton • Modelo de la dinámica del plancton (Fasham et al,1990) • Incluye bucle microbiano • Modelo de Moloney y Field (1991) • Plancton fraccionado por tallas • Modelo del ecosistema pelágico para el Mar de los Sargasos (Hurtt y Armstrong, 1996) Nixon Bahamón Marine ecology
Modelos unidimensionales con resolución vertical acoplando el componente físico y biológico • Simulación del máximo profundo de clorofila (Varela et al, 1992, 1994) • Mediterráneo Noroccidental, Mar de los Sargasos • Cinco compartimientos, 2 m resolución vertical hasta 300 m • Simulación de la dinámica del sistema (Oguz, 1996) • Mar Negro • Cinco compartimientos, 51 niveles hasta 200 m • Simulación de la producción primaria (Levy et al, 1998) • Mediterráneo Noroccidental • Siete compartimientos, resolución vertical de 5 m hasta 300 Nixon Bahamón Marine ecology
Modelos unidimensionales con resolución vertical, acoplando el componente físico y biológico • Simulación de la producción primaria • Mediterráneo Noroccidental(Levy et al, 1998) • Siete compartimientos, resolución vertical de 5 m hasta 300 m • Mar Adriático (Zavatarelli et al., 2000) • 10 coordenadas sigma hasta 500 m Nixon Bahamón Marine ecology