1 / 56

Law of Universal Gravitation

Law of Universal Gravitation. Gravity Sucks!. If I have seen further it is by standing on ye sholders of Giants. This is the statement written in a letter to Robert Hooke. It also symbolizes that the discoveries of Newton including gravity.

hans
Télécharger la présentation

Law of Universal Gravitation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Law of Universal Gravitation Gravity Sucks!

  2. If I have seen further it is by standing on ye sholders of Giants. • This is the statement written in a letter to Robert Hooke. It also symbolizes that the discoveries of Newton including gravity. • So we’re going to start with a brief history are in the bronze age.

  3. Why is it so difficult to find out about the state of astronomical knowledge of bronze-age civilizations? • Written documents from that time are in a language that we don’t understand. • There are no written documents documents from that time. • Different written documents about their astronomical knowledge often contradict each other. • Due to the Earth’s precession, they had a completely different view of the sky than we have today. • They didn’t have any astronomical knowledge at all.

  4. 0 Ancient Greek Astronomers • Models were based on unproven“first principles”, believed to be “obvious” and were not questioned: 1. Geocentric “Universe”: The Earth is at the Center of the “Universe”. 2. “Perfect Heavens”: The motions of all celestial bodies can be described by motions involving objects of “perfect” shape, i.e., spheres or circles.

  5. Ptolemy • He was Greco-Roman writer who lived in Alexandria. • Lived between 90 -168 AD • One of the few surviving text about ancient astronomy

  6. Ptolemy:Geocentric model, including epicycles 0 Central guiding principles: 1. Imperfect, changeable Earth, 2. Perfect Heavens (described by spheres)

  7. What were the epicycles in Ptolemy’s model supposed to explain? • The fact that planets are moving against the background of the stars. • The fact that the sun is moving against the background of the stars. • The fact that planets are moving eastward for a short amount of time, while they are usually moving westward. • The fact that planets are moving westward for a short amount of time, while they are usually moving eastward. • The fact that planets seem to remain stationary for substantial amounts of time.

  8. 0 Epicycles Introduced to explain retrograde (westward) motionof planets The ptolemaic system was considered the “standard model” of the Universe until the Copernican Revolution.

  9. 0 The Copernican Revolution Nicolaus Copernicus (1473 – 1543): Heliocentric Universe(Sun in the Center)

  10. Johannes Kepler (1571 – 1630) 0 • Used the precise observational tables of Tycho Brahe (1546 – 1601) to study planetary motion mathematically. • Found a consistent description by abandoning both • Circular motion and • Uniform motion. • Planets move around the sun on elliptical paths, with non-uniform velocities.

  11. 0 New (and correct) explanation for retrograde motion of the planets: Retrograde (westward) motion of a planet occurswhen the Earth passes the planet. This made Ptolemy’sepicyclesunnecessary. Described in Copernicus’ famous book “De Revolutionibus Orbium Coelestium” (“About the revolutions of celestial objects”)

  12. Galileo Galilei (1564-1642 A.D.) - Founder of Modern Mechanics and Astronomical use of the Telescope Proved Aristotle Wrong 1. Many more stars too faint to be seen with eye 2. Moon has mountains and craters like Earth…. Earth and Space made of same material 3. Discovered imperfection in Sun (SUNSPOTS)…Sun is not perfect Provided more evidence for a Heliocentric Solar System (Venus exhibits a full cycle of phases which is only possible in a Heliocentric system + Jupiter appears as a mini solar system which means that Kepler’s Laws apply for all planets)

  13. Galileo’s Sketch of the Moon Using a Telescope

  14. 0 Isaac Newton (1643 - 1727) • Adding physics interpretations to the mathematical descriptions of astronomy by Copernicus, Galileo and Kepler Major achievements: • Invented Calculus as a necessary tool to solve mathematical problems related to motion • Discovered the three laws of motion • Discovered the universal law of mutual gravitation

  15. The “Discovery” of Gravity • We’ve all heard the story… an apple fell on Newton’s head and he discovered gravity. • Most scholars believe that Newton did see an apple fall and it got him wondering about the rules for falling objects. • He wondered if the force that pulled the apple down also affected the Moon.

  16. Remember Newton’s 1st Law • He had already explained that straight-line motion was perfectly natural and moving in a circle required a force • Johannes Kepler had shown that planets and moons moved in an ellipse. • Newton wanted to understand what made them move that way. • His breakthrough was to explain how the same rules apply to little things like apples and big things like the moon.

  17. Making sense of one force and two very different results • We already learned that the apple will accelerate at about 9.8 m/s2 downward • Newton also knew that the moon accelerates toward the Earth at 0.00272 m/s2

  18. Distance is only part of the story • Distance has a large effect on the force of gravity (we’ll explore this more in a minute) • Remember, though F = m • a • The force of gravity is also affected by the mass • or more correctly, both masses

  19. Gravitational Force • Gravitational Force is the mutual force of attraction between particles of matter • This force always exists between two masses, regardless of the medium that separates them • It is not just between large masses, like the sun and the Earth. • The chair you are sitting on is attracted to the person next to you. • However, the force of friction between the chair and the carpet is so great that you don’t move.

  20. Newton’s Law of Universal Gravitation is an example of an inverse-square law • This is because the force decreases the further the two objects get from each other. • The distance is measured from the center of each mass.

  21. Remember, the Force of gravity (Fgrav) that acts on an object is the same as that object’s weight (in Newtons)

  22. Inverse Square Law 4 9 16 1/4 1/16 1/9

  23. Inverse Square Law At 4d apple weighs At 3d apple weighs At 2d apple weighs At 5d apple weighs 1/9 N 1/25 N 1/4 N 1/16 N

  24. Connecting the two formulas

  25. Example #1 Find the force of gravity between a 30 kg girl and her 10 kg cat if they are 2 meters apart. m1 = 30 kg m2 = 10 kg G = 6.67 x 10-11 N·m2/kg2 r = 2m

  26. Example #2 Find the distance between a 0.300 kg billiard ball and a 0.400 kg billiard ball if the magnitude of the gravitational force is 8.92 x 10-11 N. m1 = 0.3 kg m2 = 0.4 kg Fg = 8.92 x 10-11 N r = ?

  27. Determine the magnitude of the gravitational force between a baseball player with a mass of 100 kg and Earth (5.98 X 1024 kg), if they are separated by a distance of 5.38 X 106 m. • [Option 1] • [Option 2] • [Option 3] • [Option 4] [Default] [MC Any] [MC All]

  28. If a large meteor hits the moon, causing it to get closer to the earth. If the moon’s orbits the earth at half of its original radius, would its force be? • Double the original force • Half the original force • Four times the original force • One fourth the original force [Default] [MC Any] [MC All]

  29. The acceleration due to gravity on the International space station is 8.7 m/s2. If an 50 kg astronaut stood on a scale what would it read? • 435 N • 5.7 N • .17 N • 0 N [Default] [MC Any] [MC All]

  30. Tides • Newton also used the inverse square law to explain the tides. • People had known for centuries that the moon affects the tides. • No one until Newton knew how it did this.

  31. d-R d d+R Which of the two forces: moon on left mass (m) or moon on right mass (m) is stronger and why? Fd-R

  32. Tidal Bulges

  33. Ocean tides are the alternate rising and falling of the surface of the ocean that usually occurs in two intervals everyday, between the hours of 7a.m. to 7p.m. • It is caused by the gravitational attraction of the moon occurring unequally on different parts of the earth.

  34. KEPLER:the laws of planetary motion KEPLER’S FIRSTLAW KEPLER’S SECONDLAW KEPLER’STHIRDLAW INTERESTINGAPPLETS

  35. Johannes Kepler • Born on December 27, 1571 in Germany • Studied the planetary motion of Mars • Used observational data of Brahe HOME

  36. Instruments • Tyco Brahe • only compass and sextant • No telescope – naked eye HOME

  37. HOME Kepler’s FIRST Law • “The orbit of each planet is an ellipse and the Sun is at one focus” • Kepler proved Copernicus wrong – planets didn’t move in circles

  38. HOME Focus • Focus – one of two special points on the major axis of an ellipse • Foci – plural of focus • A+B is alwaysthe same on any point on the ellipse KEPLER’S FIRSTLAW

  39. HOME Kepler’s SECOND Law • “The line joining the planet to the sun sweeps out equal areas in equal intervals of time”

  40. HOME In Another Words… • The area from one time to another time is equal to another area with the same time interval • All of the areas (in yellow and peach) have equal intervals of time KEPLER’S SECONDLAW

  41. HOME Acceleration of Planets • Planet moves faster when closer to the sun • Force acting on the planet increases as distance decreases and planet accelerates in its orbit • Planet moves slowerwhen farther from the sun KEPLER’S SECONDLAW

  42. HOME Kepler’s THIRD Law • “The square of the period of any planet is proportional to the cube of the semi-major of its axis” • Also referred to as the Harmonic Law

  43. HOME T²  a³ • T = orbital period in years • a = semi-major axis in astronomical unit (AU) • Can calculate how long it takes (period) for planets to orbit if semi-major axis is known KEPLER’STHIRDLAW

  44. HOME Astronomical Unit • Astronomical unit – AU • AU is the mean distance between Earth and the Sun • 1 AU ≈ 1.5 x 108 km ≈ 9.3 x 107 miles KEPLER’STHIRDLAW

  45. HOME Examples of 3rd Law • Calculating the orbital period of 1AU • T² = a³ • T² = (1)³ = 1 • T = 1 year • Calculating the orbital period of 4AU • T² = a³ • T² = (4)³ = 64 • T = 8 years KEPLER’STHIRDLAW

  46. The planet Saturn is located 9.6 AU from the sun. What is the length of a year on Saturn? • 885 years • 4.5 years • 30 years • 45 years [Default] [MC Any] [MC All]

  47. HOME Comets • Although Kepler’s laws were intended to describe the motion of planets around the sun, the laws also apply to comets • Comets are good examples because they have very elliptical orbits

  48. So what would happen is fell in hole through the center of the earth? • Well Lets see!!!

  49. So what would happen is fell in hole through the center of the earth? So lets recap • The deeper you get into the earth, the weaker the gravity because there is less mass pulling you down because some is pulling you up. • The center of the earth has no gravity because the mass is surrounding you on all sides. • Once you reach the other side of the earth, you’d stop and be pulled back toward the center.

More Related