460 likes | 589 Vues
RPWS Cold Plasma Results from the Inner Magnetosphere of Saturn – dust-plasma interaction near the E-ring?. J.-E. Wahlund, A. I. Eriksson, M. W. Morooka, G. Gustafsson, R. Boström, R. Modolo Swedish Institute of Space Physics, Uppsala T. F. Averkamp, G. B. Hospodarsky, W. S. Kurth
E N D
RPWS Cold Plasma Results from the Inner Magnetosphere of Saturn – dust-plasma interaction near the E-ring? J.-E. Wahlund, A. I. Eriksson, M. W. Morooka, G. Gustafsson, R. Boström, R. Modolo Swedish Institute of Space Physics, Uppsala T. F. Averkamp, G. B. Hospodarsky, W. S. Kurth University of Iowa, Iowa City K. S. Jacobsen, A. Pedersen Oslo University, Oslo S. Kempf, R. Srama Max-Planck-Institut für Kernphysik, Heidelberg, Germany
Water in the Saturn System • Inside Saturn • Rings • Surfaces of icy moons • Enceladus plumes • Magnetosphere • Water products (O, H2, OH, …)
Dust detector (CDA) E-ring
SOI • Wahlund et al., GRL, 2005 • Ring plasma torus • 10 - 150 cm-3 < 6Rs • Te fr. 0.5 eV (2.2 RS) • to 7 eV (10 RS) • Dust Particle Charging • Dust-Plasma Interaction?
CDA Dust Particle Charging • Kempf et al., PSS, 2006
SOI Hot ions near Dione/Rhea Ti ~ 1-3 keV could explain Magnetospheric Co-rotation Ions at 3-5 RS do not co-rotate Instead < VSC Water product ions in E-ring plasma torus
Estimating Vi from a LP sweep Ubias < 0: I = Ii0 (1 - Ubias/Ti,eff) + Iph Ti,eff = Ti + mivi2/2e [eV] Ii0 nivi , √Ti 1) Slope Must assume mi 2) DC Level Need ne, Iph
LP Ram energies < 20 eV Agreement with Keplerian motion of ions together with dust/neutrals Effects of dust-plasma coupling found near Enceladus/Ring plane (RPWS-CDA) Ti < few eV CAPS Ram energies near 100-200 eV Agreement with co-rotation vB & pick-up of locally produced ions Deflection near Enceladus Co-rotation Plasma Dilemma!?3-5 Rs Inconsistent measurements with regard to ion speed (vi) of the inner magnetosphere!?
Possible LP sweep error sources • Error in used LP theory (2 independent checks) • W. Hoegy, NASA, Goddard, Maryland • [Hoegy & Brace, Rev. Sci. Instruments, 1999] • K. S. Jacobsen & A. Pedersen, University of Oslo • Energetic particle impacts • Ion composition • Small addition of H+ • Dirt on probe • Negative water-dust • Leak current • Shock in front of S/C • Ion ring distribution • Probe in wake • Etc … LP seems ok!? • so does CAPS!?
n/n Interferometry 2005.10.30 • 00:40 - 02:00 UT • 4.7 - 5.0 Rs from Saturn (outbound, inner magnetosphere) • 1000 - 1500 km from Equatorial plane • Use two 10 m RPWS antenna elements + LP in current sampling mode up to 7 ksamples/s [n/n component]
Ex: LP Sweep Analysis (4.7-5 RS) • Inner Magnetosphere example • SOI results • [Wahlund et al., GRL, 2005] • Dust charging & USC • [Kempf et al., PSS, 2006] Ne≈ 60-70 cm-3 agree with fUH Te≈ 2 eV Usc≈ -5 V Vi Vi≈ 15-20 km/s ≈ Vsc Ne Te <mi> ~ 20 amu Jacobsen & Pedersen
Ne from fuh • fuh≈ 70-75 kHz 61-70 cm-3
Plasma Speed from Interferometry k,vs d Phase: Phase Dispersion: Doppler: Equating: Plasma inhom.: f
PSD • Few emissions • Chorus ~ 1-1.5 kHz • Broadband emissions < 200 Hz Ion acoustic? • Long antenna measurements • depend on 1/RC coupling to plasma n/n below 500 Hz • LP noisy, best coherence between antenna elements • Reaction wheel interference
Co-Rotation Flow S/C E- E-/+ LP LP E+
n/n E-field filter Chorus Phase Frequency [Hz] 0 Hz 1 kHz E- vs E+ phase • 512 fft, 32 averages • All 13 such averages • 2 n/n-signature slopes! • 42-55 km/s (sd= 0 assumed) • Co-rot: 46-48 km/s • CAPS happy! • 12-14 km/s (sd= 0 assumed) • Keplerian: 11.5 km/s • LP happy!
LP vs E-/E+ • Plasma inhom. exist in whole frequency range • One slope only (slow Keplerian) • (VSC-Vplasma) = 3-5 .cossd km/s • No fast component detectable!? • Coherence length effect on antenna? • LP vs E+ signal mostly incoherent LP/E- LP/E+ • Antenna measures E-field LP measures n/n n/n
Waveform (1024 points snapshot) 3.8 cossd km/s LP/E- LP/E+ 14.5 +13.9 cossd ≈ 28.3 km/s E-/E+ -0.3 ms +0.9 ms Cross-correlation in time
Waveform (1024 points snapshot) 1.4 cossd km/s LP/E- LP/E+ 2.1 cossd km/s E-/E+ +2 ms Cross-correlation in time
Waveform (1024 points snapshot) LP/E- LP/E+ 14.5 -3.5 cossd ≈ 11 km/s E-/E+ Cross-correlation in time
S/C-Frame Rest-Frame Keplerian 12km/s E- S/C 14-15 km/s LP Co-Rotation 45-50 km/s E+ • CAPS prediction: • Look in anti-co-rotation direction • Look for ion signatures < 2-3 eV
Dust-Plasma Coupling? ~ 2D ≈ 2 m - - - + - - - + - - + - • Dust Charge from Usc : -2 to -5 V • qdust ~ 700e/Volt 2000-4000 e/dust • CDA, qdust ~ 0.5 - 5 fC = 3000 - 30000 e/dust • [Kempf et al., PSS, 2006] • Cold ions (Ti < 5 eV) will be trapped close to dust particles • CDA & RPWS detects 0.1 m-3 for rdust > 2 m (rd-2.8 distribution) • Dust drag? • ndmd(GMS/r2) ~7.10-14 CDA observed > 2 m dust ~3.10-12 assuming nd ~ 20 m-3, 0.7 m dust • enivco-rot B ~2.10-13 • Conclusions (preliminary): • Interferometer results suggests that two ion populations exist • One Co-rotating with magnetic field (45-50 km/s) • One rotating with close to Keplerian speed (11-14 km/s) + + + - + + - + - + + + + + + + + + + + + + -10000e
Momentum Transfer nimidvi/dt = eni(E+viB) + nimig + niinin(vn-vi) + pi + mass load Near Enceladus: enivco-rot B ~2.10-13 nimig ~2.10-18 << niinin(vi-vn) ~2.10-17 << (using INMS nn ~105 cm-3) pi ~10-19 << mass loading ndmddvd/dt = qdnd(E+vdB) + ndmdg + … Magnetospheric conductances [Saur et al., JGR, 2004]
(H+) W+ • ~ 5-100 m k ~ 0.06-1.3 m-1 Dust induced inhom. IA inhom/waves following co-rotation
T11 • Possible ion acoustic like emissions below 100 Hz • Cs~ 7 km/s • Dobe & Szego, JGR, 2005 • Beam driven/ion-ion instab? E- vs E+ [deg] f [Hz]
Suporting Results near Enceladus
RPWS Langmuir Probe results • J-E. Wahlund, et al. • Results from flybys: • February 17 • March 9 • July 14 • Cold dense plasma torus associated with E-ring • No Enceladus Ionosphere, but overall enhencement • No co-rotation • vi < 15 km/s • 1-2 cs • Dust-plasma interactions
Enceladus, July 14 C/A • “Smooth” undisturbed profiles • No wake signatures • No shock signatures 40 000 km Ne = 60-80 cm-3, SOI: 40 cm-3 Te = 0.9 - 1.2 eV Usc = -1.9 to -2.5 V VH2O+ < 8 km/s rel. S/C TH2O+ < 6 eV Richardson, 1995: ~10 eV <mi>, water group ions
Enceladus,March 9 C/A Undisturbed cold plasma < 100 000 km fr. C/A Ne = 60-70 cm-3 (peak at 90 cm-3) Te = 0.8 - 1.0 eV Usc = -1.8 to -2.0 V VH2O+ < 10 km/s rel. S/C TH2O+ < 9 eV <mi>, water group ions
Enceladus, Feb. 17 C/A Undisturbed cold plasma < 80 000 km fr. C/A Ne = 100 -130 cm-3 Te = 1.0 - 1.4 eV Usc = -2.8 to -3.2 V VH2O+ < 5 km/s rel. S/C TH2O+ < 3 eV <mi>, water group ions
C/A LP in S/C wake? 2000 km (z ≈ 800 km) 17000 km (z ≈ 6000 km) Charged dust signatures?
fUH Dust impacts
Dust Charge Level? • Is difference in ne and ni due to dust charge? • (ni - ne) ≈ 20 - 40 cm-3 • Requires ndust ~ 0.001 cm-3 - Possible? • CDA detects in same region 0.1 m-3 for rdust > 2 m • RPWS dust counts are similar • Extrapolating dust distribution to smaller sizes • Dust down to 0.07 m (700 Å) necessary for rd-2.8 distribution • Do we have dust-plasma interaction?
Charged dust? 0.7 RS C/A
fUH Dust hits
Conclusions • Cold Dense Plasma Torus (near Enceladus) • ne = 60-130 cm-3, Te = 0.8-1.4 eV, Ti < 3-10 eV • Near Keplerian rotation. Ion flow speed < 15 km/s relative S/C • Water group ions • No (or small) Enceladus ionosphere signature • Hotter Co-rotating ions (detected by CAPS) • Near 40-50 km/s (EB-motion) • Dust-plasma interactions • (ni - ne)/ni • Mostly below 1% • Near Enceladus E-ring crossing = 30 - 50% • In regions where CDA & RPWS detects significant amounts of dust • Resolve (sub) co-rotation • More dn/n Interferometer measurements • More comparisons with CDA dust measurements in E-ring crossings • Theory application