530 likes | 724 Vues
A Neural-Network Approach for Visual Cryptography. 虞台文. 大同大學資工所. Content. Overview The Q’tron NN Model The Q’tron NN Approach for Visual Cryptography Visual Authorization Semipublic Encryption General Access Scheme Conclusion. A Neural-Network Approach for Visual Cryptography.
E N D
A Neural-Network Approach for Visual Cryptography 虞台文 大同大學資工所
Content • Overview • The Q’tron NN Model • The Q’tron NN Approach for • Visual Cryptography • Visual Authorization • Semipublic Encryption • General Access Scheme • Conclusion
A Neural-Network Approach for Visual Cryptography Overview 大同大學資工所
What isVisual Cryptography and Authorization? • Visual Cryptography (VC) • Encrypts secrete into a set of images (shares). • Decrypts secrete using eyes. • Visual Authorization (VA) • An application of visual cryptography. • Assign different access rights to users. • Authorizing using eyes.
What is Semipublic Encryption? • Visual Cryptography (VC) • Encrypts secrete into a set of images (shares). • Decrypts secrete using eyes. • Semipublic Encryption (SE) • An application of visual cryptography. • Hideonlysecret parts in documents • Right information is available if and only if a right key is provided
Access Scheme The (2, 2) access scheme. The Basic Concept of VC Share 1 Target Image (The Secret) Share 2
We get shares after the NN settles down. The Shares Produced by NN Neural Network Share 1 Target Image (The Secret) Share 2
Decrypting Using Eyes Share 1 Share 2
Plane shares are used Example: (2, 2) Share image1 Share image2 Target image
Naor and Shamir (2,2) Shares #1 #2 Superposition of the two shares Pixel Probability Traditional Approach The Code Book White Pixels Black Pixels
P IP VIP … stacking stacking P IP VIP … Very Important Person. The VA Scheme user shares (resource 1) … user shares (resource 2) key share …
The SE Scheme 智慧型系統實驗室資料庫 使用者Key 江素貞 AB 陳美靜 CD 張循鋰 XY 李作中 UV
stacking The SE Scheme public share (database in lab) user shares 循鋰 美靜 作中 素貞 AB CD XY UV keys
A Neural-Network Approach for Visual Cryptography The Q’tron NN Model 大同大學資工所
aiQi Active value External Stimulus Qi{0, 1, …, qi1} IiR . . . qi1 0 1 2 Internal Stimulus Ni Noise Quantum Neuron The Q’tron i (ai )
aiQi Active value Qi{0, 1, …, qi1} . . . qi1 0 1 2 Internal Stimulus Free-Mode Q’tron The Q’tron External Stimulus IiR i (ai ) Ni Noise
aiQi Active value Qi{0, 1, …, qi1} Internal Stimulus Clamp-Mode Q’tron The Q’tron External Stimulus IiR . . . i (ai ) qi1 0 1 2 Ni Noise
. . . Input Stimulus i (ai ) Noise Noise Internal Stimulus Noise Free Term External Stimulus
. . . Level Transition i (ai ) Running Asynchronously
Energy Function Monotonically Nonincreasing Interaction Among Q’trons Constant Interaction with External Stimuli
clamp-mode free-mode free mode Hidden Q’trons Interface/Hidden Q’trons Interface Q’trons
clamp-mode Interface Q’trons free-mode free mode Hidden Q’trons Feed a question by clamping some interface Q’trons. Question-Answering
clamp-mode Interface Q’trons free-mode free mode Hidden Q’trons Read answer when all interface Q’trons settle down. Question-Answering
A Neural-Network Approach for Visual Cryptography The Q’tron NNs for Visual Cryptography Visual Authorization Semipublic Encryption 大同大學資工所
Energy Function for VC Visual Cryptography Image Halftoning Image Stacking +
Graytone Image Halftone Image 0 0 (Transparent) 255 1 Graytone imagehalftone image can be formulated as to minimize the energy function of a Q’tron NN. Image Halftoning Halftoning
In ideal case, each pair of corresponding small areas has the `same’ average graylevel. Graytone Image Halftone Image 0 0 (Transparent) 255 1 Graytone imagehalftone image can be formulated as to minimize the energy function of a Q’tron NN. Image Halftoning Halftoning
The Q’tron NN for Image Halftoning Plane-G (Graytone image) Plane-H (Halftone image)
Halftoning Image Halftoning Plane-G (Graytone image) Clamp-mode Question Answer Free-mode Plane-H (Halftone image)
Restoration Image Restoration Plane-G (Graytone image) Free-mode Answer Question Clamp-mode Plane-H (Halftone image)
+ + + + The satisfaction of stacking rule can also be formulated as to minimize the energy function of a Q’tron NN. Stacking Rule
The energy function for the stacking rule. + + + + The satisfaction of stacking rule can also be formulated as to minimize the energy function of a Q’tron NN. Stacking Rule See the paper for the detail.
+ The Total Energy Total Energy Image Halftoning Stacking Rule Share 1 Share 2 Share 1 Share 2 Target Target
Target Plane-GT Plane-HT Plane-HS2 Plane-HS1 Plane-GS2 Plane-GS1 Share 1 Share 2 The Q’tron NN for VC/VA
Target Plane-GT Plane-HT Plane-HS2 Plane-HS1 Plane-GS2 Plane-GS1 Share 1 Share 2 Application Visual Cryptography Clamp-Mode Free-Mode Free-Mode Free-Mode Clamp-Mode Clamp-Mode
Plane-GT Plane-HT Plane-HS2 Plane-HS1 Plane-GS2 Plane-GS1 Key Share Application Visual Authorization User Share Authority VIP IP P Key Share User Share
Producing key Share & the firstuser share. Plane-HS1 Plane-GS1 Key Share Application Visual Authorization User Share Authority Clamp-Mode VIP IP P Plane-GT Free-Mode Plane-HT Free-Mode Free-Mode Plane-HS2 Plane-GS2 Clamp-Mode Clamp-Mode Key Share User Share
Producing other user shares. Key Share Application Visual Authorization User Share Authority Clamp-Mode VIP IP P Plane-GT Some are clamped and some are free. Plane-HT Clamp-Mode Free-Mode Plane-HS2 Plane-HS1 Plane-GS2 Plane-GS1 Clamp-Mode Key Share User Share
Producing other user shares. Key Share Application Visual Authorization User Share Authority Clamp-Mode VIP IP P Plane-GT Some are clamped and some are free. Plane-HT Clamp-Mode Free-Mode Plane-HS2 Plane-HS1 Plane-GS2 Plane-GS1 Clamp-Mode Key Share User Share
Key Share Application Visual Authorization User Share Authority Clamp-Mode VIP IP P Plane-GT Some are clamped and some are free. Plane-HT Clamp-Mode Free-Mode Plane-HS2 Plane-HS1 Plane-GS2 Plane-GS1 Clamp-Mode Key Share User Share
User Share VIP IP User Share Key Share User Share P
A Neural-Network Approach for Visual Cryptography General Access Scheme 大同大學資工所
間 朝 辭 白 帝 彩 雲 Full Access Scheme 3 Shares 朝辭白帝彩雲間 Shares
間 朝 辭 白 帝 彩 雲 Full Access Scheme 3 Shares 朝辭白帝彩雲間 Shares Theoretically, unrealizable. We did it in practical sense.
Full Access Scheme 3 Shares S1 S2 S3 S1+S2 S1+S3 S2+S3 S1+S2+S3
Access Schemewith Forbidden Subset(s) Anyone knows what is it?
善 人 之 初 X 性 本 Access Schemewith Forbidden Subset(s) 人之初性本善 Shares Theoretically, realizable.
Access Schemewith Forbidden Subset(s) S1 S2 S3 S1+S2 S1+S3 S2+S3 S1+S2+S3
A Neural-Network Approach for Visual Cryptography Conclusion 大同大學資工所