1 / 43

Ultrafast Excited State Intramolecular Proton Transfer in HPO and HBT

Ultrafast Excited State Intramolecular Proton Transfer in HPO and HBT. Israel Science Foundation Workshop Diffusion, Solvation and Transport of Protons in Complex and Biological Systems Hilton Eilat Queen of Sheba Hotel, January 13-17, 2008

herlinda
Télécharger la présentation

Ultrafast Excited State Intramolecular Proton Transfer in HPO and HBT

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ultrafast Excited State Intramolecular Proton Transfer in HPO and HBT Israel Science Foundation Workshop Diffusion, Solvation and Transport of Protons in Complex and Biological Systems Hilton Eilat Queen of Sheba Hotel, January 13-17, 2008 Organizers: E. Pines, N. Agmon, M. Gutman and D. Huppert. Justin Kim, Yinghua Wu, Xin Chen and Victor S. Batista Department of Chemistry, Yale University, New Haven, CT 06520-8107 • NSF CHE-0345984 • NSF ECCS-0725118 • NIH 2R01-GM043278-14 • DOE DE-FG02-07ER15909 • US-Israel BSF • Sloan Fellowship • Camillie Dreyfus Teacher Scholar Award • NSF ECS-0404191 • Research Corporation Innovation Award RI0702 • ACS PRF-37789-G6 Funding:

  2. E. T. J. Nibbering, H. Fidder and E. Pines Annu. Rev. Phys. Chem. (2005) 56:337-67 Ultrafast Excited State Intramolecular Proton Transfer in HBT Transient appearance of the C=O stretching mode of the keto*-state of HBT after excitation of the enol → enol* transition. ~50 fs IVR~ 750 fs, 15 ps 310-350 nm

  3. Time-Sliced Simulations of Quantum Processes

  4. Trotter Expansion MP/SOFT Method Wu,Y.; Batista, V.S. J. Chem. Phys.(2003) 118, 6720 Wu,Y.; Batista, V.S. J. Chem. Phys.(2003) 119, 7606 Wu,Y.; Batista, V.S. J. Chem. Phys.(2004) 121, 1676 Chen, X., Wu,Y.; Batista, V.S. J. Chem. Phys.(2005) 122, 64102 Wu,Y.; Herman, M.F.; Batista, V.S. J. Chem. Phys.(2005) 122, 114114 Wu,Y.; Batista, V.S. J. Chem. Phys.(2006) 124, 224305 Chen, X.; Batista, V.S. J. Chem. Phys.(2006) 125, 124313 Chen, X.; Batista, V.S. J. Photochem. Photobiol.(2007) 190, 274

  5. Wu,Y.; Batista, V.S. J. Chem. Phys. 121, 1676 (2004)

  6. Fixed Point Self-Consistent Contraction Mapping

  7. Computation of Observables Absorption Spectrum: Time dependent reactant population:

  8. Reaction Surface 69-dimensional Model V(r1,r2,z) = V0(r1,r2) + 1/2 [z- z0(r1,r2)] F(r1,r2) [z-z0(r1,r2)] r1 V0 : Reaction surface r2 r1,r2 : reaction coordinates z0 : ab initio geometries F : ab initio force constants

  9. Reaction Surface V0(r1,r2) Energy (kcal/mol) ENOL KETO CCC bend. angle (degrees) S1 OH bond length (a.u.) Energy (kcal/mol) S0 CCC bend. angle (degrees) OH bond length (a.u.)

  10. t=0 fs t=800 fs t=700 fs t=50 fs t=100 fs t=200 fs t=400 fs t=500 fs t=300 fs t=600 fs t=900 fs ESIPT or ESIHT ? Ultrafast Charge Redistribution in HBT

  11. ESIPT in HBT: 69-Dimensional MP/SOFT Wavepacket Propagation PR(t), (MP/SOFT) PR(t), (TDSCF) Tr [2(t)], (MP/SOFT) t = 50 fs

  12. UV-Vis Photoabsorption Spectrum of HBT MP/SOFT spectrum Experiments: Rini M,KummrowA, Dreyer J, Nibbering ETJ, Elsaesser T. 2003. Faraday Discuss. 122:27–40 Rini M, Dreyer J, Nibbering ETJ, Elsaesser T. 2003. Chem. Phys. Lett. 374:13–19

  13. Ultrafast Excited State Intramolecular Proton Transfer in HBT t = 0 fs IR - S0 (Calc.) 1700 1600 1500 1400 1300 1200 1100 1000 Wavenumber [cm-1] t = 500 fs IR - S1 (Calc.) 1700 1600 1500 1400 1300 1200 1100 1000 Wavenumber [cm-1]

  14. Infrared spectra of HBT IR - S1 (Calc.) IR Intensity 1700 1600 1500 1400 1300 1200 1100 1000 Wavenumber [cm-1] IR - S0 (Calc.) IR Intensity 1700 1600 1500 1400 1300 1200 1100 1000 Wavenumber [cm-1] IR - S0 (Exp.) IR Intensity 1700 1600 1500 1400 1300 1200 1100 1000 Wavenumber [cm-1]

  15. Transient infrared spectra of HBT Theoretical Experimental Wavenumber [cm-1] Wavenumber [cm-1] Experiments: Rini M,KummrowA, Dreyer J, Nibbering ETJ, Elsaesser T. 2003. Faraday Discuss. 122:27–40 Rini M, Dreyer J, Nibbering ETJ, Elsaesser T. 2003. Chem. Phys. Lett. 374:13–19

  16. ESIPT in the keto-enolic tautomerization of 2-(2’-hydroxyphenyl)-oxazole (HPO). Wu,Y.; Batista, V.S. J. Chem. Phys.(2006) 124, 224305 Changes in hybridization and connectivity Classical Dynamics (HPMO) Vendrell, O.; Moreno, M.; Lluch J.M.; Hammes-Schiffer, S. J. Phys. Chem. B 108, 6745 (2004) Quantum Dynamics (7-d simulation, related ESIPT system) Petkovic, M.; Kühn, O. J. Phys. Chem. A 107, 8458 (2003) SC-IVR (HPO) Guallar, V.; Batista, V.S.; Miller, W.H. J. Chem. Phys. 113, 9510 (2000) Batista, V.S.; Brumer, P. Phys. Rev. Lett. 89, 143201 (2002) Batista, V.S.; Brumer, P. Phys. Rev. Lett. 89, 249903 (2002)

  17. CASSCF Reaction Surface Potential V0(r1,r2)

  18. Wu,Y.; Batista, V.S. J. Chem. Phys.(2006) 124, 224305 UV-Vis Absorption Spectrum of 2-2’-(hydroxyphenyl)-oxazole (HPO) HPMO in n-hexane Douhal et.al. JPC 100, 19789 (1997) 35-dimensional wave-packet propagation

  19. Wu,Y.; Batista, V.S. J. Chem. Phys.(2006) 124, 224305 Guallar, V.; Batista, V.S.; Miller, W.H. J. Chem. Phys. 113, 9510 (2000) Batista, V.S.; Brumer, P. Phys. Rev. Lett. 89, 143201 (2002) Batista, V.S.; Brumer, P. Phys. Rev. Lett. 89, 249903 (2002) Time-Dependent Reactant (enol) Population Femtosecond fluorescent transient at 420nm for HPMO in 3-methylpentane JPC 102,1657 (1998) Zewail, Fiebig and co-workers

  20. Decoherence and Recoherence Dynamics HK SC-IVR vs. MP/SOFT [1] [2] [1] Wu,Y.; Batista, V.S. J. Chem. Phys. (2006) 124, 224305 [2] Batista, V.S.; Brumer, P. Phys. Rev. Lett. 89, 143201 (2002)

  21. Coherent-Control of the keto-enolic isomerization in HPO Contour plot of the percentage product yield for bichromatic coherent-control at 100 fs after photoexcitation of the system, as a function of the laser controllable parameters. Batista, V.S.; Brumer, P. Phys. Rev. Lett. 89, 143201 (2002)

  22. Chen, X., Wu,Y.; Batista, V.S. J. Chem. Phys.(2005) 122, 64102 Chen, X.; Batista, V.S. J. Chem. Phys. (2006) 125, 124313 Nonadiabatic Propagation

  23. MP/SOFT Nonadiabatic Propagation

  24. Chen,X.; Batista, V.S. J. Chem. Phys. (2006) 125, 124313 Nonadiabatic Dynamics of Pyrazine S1/S2 Conical Intersection Chen,X.; Batista, V.S. J. Chem. Phys. (2006) in prep. Benchmark Calcs.: 4-mode model

  25. Chen,X.; Batista, V.S. J. Chem. Phys. (2006) 125, 124313 Nonadiabatic Dynamics of Pyrazine S1/S2 Conical Intersection Benchmark Calcs.: 24-mode model

  26. Benchmark Calcs.: 24-mode model

  27. The Primary Step in Vision cis/trans isomerization in visual rhodopsin Flores SC and Batista VS, J. Phys. Chem. B (2004) 108: 6745-6749. Gascon JA, Batista VS, Biophys. J. (2004) 87:2931-29411. Gascon JA, Sproviero EM, Batista VS, J. Chem. Theor. Comput. (2005) 1:674-685. Gascon JA, Sproviero EM, Batista VS, Acc. Chem. Res. (2006) 39, 184-193. Chen X and Batista VB, J. Photochem. Photobiol. (2007) 190, 274-282.

  28. Empirical model (G. Stock)

  29. Time dependent wavepacket undergoing nonadiabatic dynamics at the conical intersection of S1/S0 potential energy surfaces Xin Chen and Victor S. Batista. J. Photochem. Photobiol. (2007) 190, 274

  30. Time dependent reactant population MP/SOFT‡ TDSCF* 0.67 Ptrans(S0) Pcis(S1) Time, fs ‡Chen X, Batista VS; J. Photochem. Photobiol. (2007) 190, 274 *Flores SC and Batista VS, J. Phys. Chem. B (2004) 108: 6745-6749

  31. Quantum interference of molecular wavepackets associated with indistinguishable pathways to the same target state Isomerization coordinate, Flores SC; Batista VS, J. Phys. Chem. B108: 6745-6749 (2004) Batista VS; Brumer P, Phys. Rev. Lett.89, 143201 (2002) | j > | k >

  32. Bichirped Coherent Control Scenario Flores SC; Batista VS, J. Phys. Chem. B (2004) 108: 6745-6749 CR = CR= Chirped Pump Pulses (Wigner transformation forms)

  33. Impulsive Stimulated Raman Scattering Energy S1 S0 Reaction coordinate (Stretch. Coord.) NC:

  34. Exact Quantum Dynamics Simulations (t=218 fs, CR=212 fs2) Excited State S1 Ground State S0 cis trans

  35. Exact Quantum Dynamics Simulations (t=218 fs, CR=-146 fs2) Excited State S1 Ground State S0 cis trans

  36. Bichirped Coherent Control Maps (1.2 ps) Pulse Relative Phases Pulse Relative Intensities

  37. Thermal Correlation Functions Chen, X., Wu,Y.; Batista, V.S. J. Chem. Phys. 122, 64102 (2005) Time-Dependent Boltzmann Ensemble Averages

  38. Chen, X., Wu,Y.; Batista, V.S. J. Chem. Phys. 122, 64102 (2005) Bloch Equation: MP/SOFT Integration Partition Function Boltzmann Matrix:

  39. Chen, X., Wu,Y.; Batista, V.S. J. Chem. Phys. 122, 64102 (2005) Position-Position Correlation Function

  40. Conclusions • We have introduced the MP/SOFT method for time-sliced simulations of quantum processes in systems with many degrees of freedom. The MP/SOFT method generalizes the grid-based SOFT approach to non-orthogonal and dynamically adaptive coherent-state representations generated according to the matching-pursuit algorithm. • The accuracy and efficiency of the resulting method were demonstrated in simulations of excited-state intramolecular proton transfer in HPO and HBT, as modeled by multidimensional ab initio reaction surface Hamiltonians, as well as in benchmark simulations of nonadiabatic quantum dynamics in pyrazine. • Further, we have extended the MP/SOFT method for computations of thermal equilibrium density matrices (equilibrium properties of quantum systems), finite temperature time-dependent expectation values and time-correlation functions. The extension involves solving the Bloch equation via imaginary-time propagation of the density matrix in dynamically adaptive coherent-state representations, and the evaluation of the Heisenberg time-evolution operators through real-time propagation.

  41. Acknowledgments • NSF CHE-0345984 • NSF ECCS-0725118 • NIH 2R01-GM043278-14 • DOE DE-FG02-07ER15909 • US-Israel BSF • Sloan Fellowship • Camillie Dreyfus Teacher Scholar Award • NSF ECS-0404191 • Research Corporation Innovation Award RI0702 • ACS PRF-37789-G6 • DOE NERSC Allocation of Supercomputer Time • Workshop Organizers: E. Pines, N. Agmon, M. Gutman and D. Huppert. • Thank you !

More Related