1 / 27

Neutrino oscillations in oxygen-neon-magnesium supernovae

Neutrino oscillations in oxygen-neon-magnesium supernovae. Cecilia Lunardini Arizona State University And RIKEN-BNL Research Center. C.L., B. Mueller and H.T. Janka, arXiv:0712.3000, in press at PRD. ONeMg core. He shell. A “petite” supernova: ONeMg.

Télécharger la présentation

Neutrino oscillations in oxygen-neon-magnesium supernovae

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.


Presentation Transcript

  1. Neutrino oscillations in oxygen-neon-magnesium supernovae Cecilia Lunardini Arizona State University And RIKEN-BNL Research Center C.L., B. Mueller and H.T. Janka, arXiv:0712.3000, in press at PRD

  2. ONeMg core He shell A “petite” supernova: ONeMg Plot from Janka, Marek, Kitaura , AIP Conf.Proc.937:144-154,2007 • Small progenitor: 8-10 Msun • Up to 20% of all SNe! • Next galactic SN? • Sharp density stepat base of He shell Poelarends et al., arXiv:0705.4643 K. Nomoto, Astrophys. J. 277, 791–805 (1984).

  3. Easier explosion • Little resistance from envelope • Faster shockwave Fe, 15 Msun ONeMg, 8.8 Msun shock Buras, Rampp, Janka, Kifonidis, Astron. Astrophys. 447, 1049 (2006) Kitaura, Janka, Hillebrandt, Astron. Astrophys. 450 (2006) 345

  4. The simulation • Calculates time-evolved density profile and neutrino flux • Uses 8.8 Msun progenitor model from K. Nomoto • Spherical symmetry • PROMETHEUS/VERTEX code • variable Eddington factor solver for the neutrino transport • state-of-the-art treatment of neutrino-matter interactions. • Particular effort was made to implement nuclear burning and electron capture rates with sufficient accuracy to ensure a smooth continuation, without transients, from the progenitor evolution to core collapse. K. Nomoto, Astrophys. J. 277, 791–805 (1984).

  5. Electron number density, ne: • relativistic speed of shock 0 ms t=0,50,100,….,700 ms 100 ms 250 ms 700 ms post-shock pre-shock

  6. Hierarchy of average energies • Oscillation effects  spectrum permutation

  7. Sin2 213<0.15 CHOOZ, PLB466, 1999 Normal hierarchy, D m232>0 Inverted hierarchy, D m232<0 Oscillations: masses and mixings m

  8. In medium: frequencies • Kinetic: • Forward scattering (refraction) • on electrons • ne electron number density • On neutrinos (“self interaction”) • N number density, R decoupling radius

  9. Rule of thumb: scattering terms are relevant only if larger than kinetic: e¸ji ¸ji • ¸ji non-linear, collective effects • indirect dependence on matter profile • e ~ ji MSW resonance • Strong dependence on matter profile (ne) Duan, Fuller, Carlson and Qian, Phys. Rev.D 74, 105014 (2006) Mikheev, Smirnov, Wolfenstein (1985,1978)

  10.  decouples first: effects factorize Post-shock (t>300 ms) “Supernova” resonance, 13 t=0,50,100,….,700 ms e/(21/2 GF) = ne /(21/2 GF) = neff 31/(21/2 GF) 21/(21/2 GF) End of self-interaction effects “solar” resonance

  11. Self interaction effects • Effects of  are negligible if: • Hierarchy is normal ( m231>0) • They decouple before the MSW resonance (e ~ 21 >> ) • 13 is small Reduction to MSW resonances only! Hannestad, Raffelt, Sigl and Wong, Phys.Rev.D74:105010,2006 Raffelt and Smirnov, Phys.Rev.D76:081301,2007 Fogli, Lisi, Marrone and Mirizzi, arXiv:0707.1998

  12. MSW: PH, PL as switches Eigenvalues x = , Dighe and Smirnov, Phys.Rev.D62:033007,2000

  13. PH Transition probability • Depends on density profile: • Steeper profile, smaller mixing  more transition (non-adiabatic, less conversion) PH 1 13! 0 dne/dr !1

  14. All frequencies relevant: numerical approach Pre-shock Duan, et al. arXiv:0710.1271, Dasgupta et al., arXiv:0801.1660, analytical interpretation e/(21/2 GF) = ne t=0,50,100,….,700 ms e ~  ~ 31 31/(21/2 GF) 21/(21/2 GF) /(21/2 GF) = neff

  15. PL=0 PH=0 PL=1 PH=1 • MSW-equations still valid with effective, step-like PH,PL • PL = (E-12 MeV) • PH=(E-15 MeV) • p=cos212 ~ 0.68 at E >15 MeV • Valid for any 13 P(e 1) P(e 2) P(e 3) sin213=0.01 Duan, Fuller, Carlson, and Qian, arXiv:0710.1271 Duan, private comm.

  16. Oscillations in the Earth • e flux in a Earth-shielded detector: = + Production point Regeneration in Earth: P(2!e)-sin212 Conversion in star C.L. & A.Yu. Smirnov, Nucl.Phys.B616:307-348,2001

  17. What to expect: • ONeMg:early (~1 s)increase of conversion (profile becomes smoother) ONeMg

  18. Fe:late (~5 s)decrease of conversion (profile becomes steeper due to shock) Schirato & Fuller, astro-ph/0205390 Fe

  19. Intermediate: Slow (three steps) decrease Large: Fast decrease Small: No decrease Results: jumping probabilites t=60 ms E=20 MeV t=450 ms t=700 ms Fe supernova sin213

  20. PL (20 MeV) = 1 pre-shock 0 post-shock • Fe SN: PL=0 at all times

  21. e survival probability: fast, slower, slowest.. sin213=10-5 sin213=6 10-4 Fe-core SN sin213=10-2

  22. t=700 ms t=450 ms t=60 ms Earth effect: fast.. (FDe-Fe)/Fe Fe SN: no effect

  23. ..slower.. Fe SN: no effect

  24. ..slowest Fe SN: opposite sign at 60 ms, similar effect later

  25. Observed spectra ONeMg Fe t=60 ms t=450 ms t=700 ms

  26. ONeMg vs Fe: differences

  27. Why important? • Unique way to test the density step (O-He transition) • Tomography! • Provide progenitor identification (ONeMg or Fe) for obscured SNe • Necessary to interpret  data from a ONeMg SN • Test collapse models, neutrino emission, etc. • learn on 13, hierarchy, exotica, …

More Related