1 / 132

Dynamic Programming (continued)

Dynamic Programming (continued). Programming Puzzles and Competitions CIS 4900 / 5920 Spring 2009. TCO 09 Algorithms (Feb.). Today. TCO 09 Algorithms (March). Lecture Outline. Order Notation (for real this time) Dynamic Programming w/ Iteration Fibonacci numbers (revisited)

Télécharger la présentation

Dynamic Programming (continued)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Dynamic Programming (continued) Programming Puzzles and Competitions CIS 4900 / 5920 Spring 2009

  2. TCO 09 Algorithms (Feb.) Today

  3. TCO 09 Algorithms (March)

  4. Lecture Outline • Order Notation (for real this time) • Dynamic Programming w/ Iteration • Fibonacci numbers (revisited) • Text Segmentation (revisited) • ACM ICPC

  5. Algorithmic Complexity • We would like to be able to describe how long a program takes to run

  6. Algorithmic Complexity • We would like to be able to describe how long a program takes to run • We should express the runtime in terms of the input size

  7. Algorithmic Complexity • Absolute time measurements are not helpful, as computers get faster all the time

  8. Algorithmic Complexity • Absolute time measurements are not helpful, as computers get faster all the time • Also, runtime is clearly dependent on the input (and input size)

  9. Order Notation • We define O(*) as follows

  10. Order Notation • Basically, we just want to count the number of operations (without being too precise)

  11. Examples • What’s the complexity of the following code? int c = a + b;

  12. Examples • What’s the complexity of the following code? int c = a + b; • Answer: O(1)

  13. Examples • What’s the complexity of the following code? int c = a + b; • Answer: O(1) • (it actually depends on how you count)

  14. Example 2 for(int i = 0; i < n; ++i) { //do something }

  15. Example 2 for(int i = 0; i < n; ++i) { //do something } • Answer: O(n)

  16. Example 2 for(int i = 0; i < n; ++i) { //do something } • Answer: O(n) • O(c) operations for each i  O(cn) == O(n) total operations

  17. Example 2 for(int i = 0; i < n; ++i) { for(int j = 0; j < n; ++j) { //do something } }

  18. Example 2 for(int i = 0; i < n; ++i) { for(int j = 0; j < n; ++j) { //do something } } • Answer: O(n2)

  19. Example 2 for(int i = 0; i < n; ++i) { for(int j = 0; j < n; ++j) { //do something } } • Answer: O(n2) • O(n) operations for each i == n * n total operations == O(n2) total operations

  20. Example 3 for(int i = 0; i < n; ++i) { for(int j = i; j < n; ++j) { //do something } }

  21. Example 3 for(int i = 0; i < n; ++i) { for(int j = i; j < n; ++j) { //do something } } • The first iteration of the outer loop takes O(n)

  22. Example 3 for(int i = 0; i < n; ++i) { for(int j = i; j < n; ++j) { //do something } } • The second iteration of the outer loop takes O(n-1)

  23. Example 3 for(int i = 0; i < n; ++i) { for(int j = i; j < n; ++j) { //do something } } • The third iteration of the outer loop takes O(n-2)…

  24. Example 3 for(int i = 0; i < n; ++i) { for(int j = i; j < n; ++j) { //do something } } • The last iteration of the outer loop takes O(1)

  25. Example 3 • n + (n–1) + … + 1 = ?

  26. Example 3 • n + (n–1) + … + 1 = ? • Call this sum N

  27. Example 3 • n + (n–1) + … + 1 = N • Call this sum N

  28. Example 3 • n + (n–1) + … + 1 = N • Call this sum N N = n + (n-1) + … + 2 + 1

  29. Example 3 • n + (n–1) + … + 1 = N • Call this sum N N = n + (n-1) + … + 2 + 1 N = 1 + 2 + … + (n-1) + n

  30. Example 3 • n + (n–1) + … + 1 = N • Call this sum N N = n + (n-1) + … + 2 + 1 N = 1 + 2 + … + (n-1) + n • Now, add these two together: 2N = (n + 1) + ((n-1) + 2) + … + (1 + n)

  31. Example 3 • n + (n–1) + … + 1 = N • Call this sum N N = n + (n-1) + … + 2 + 1 N = 1 + 2 + … + (n-1) + n • Now, add these two together: 2N = (n + 1) + ((n-1) + 2) + … + (1 + n) = n * (n + 1)

  32. Example 3 • n + (n–1) + … + 1 = N • Call this sum N N = n + (n-1) + … + 2 + 1 N = 1 + 2 + … + (n-1) + n • Now, add these two together: 2N = (n + 1) + ((n-1) + 2) + … + (1 + n) = n * (n + 1) N = n * (n + 1) / 2

  33. Example 3 • n + (n–1) + … + 1 = N • Call this sum N N = n + (n-1) + … + 2 + 1 N = 1 + 2 + … + (n-1) + n • Now, add these two together: 2N = (n + 1) + ((n-1) + 2) + … + (1 + n) = n * (n + 1) N = n * (n + 1) / 2 = O(n2)

  34. Examples • This is also the number of ways 2 items can be chosen from a set of (n + 1) items, disregarding order and without replacement (also called “(n + 1) choose 2”, binomial coefficient)

  35. Fibonacci Numbers • F0 = 0 • F1 = 1 • Fn = Fn-1 + Fn-2 for n > 1 • 0, 1, 1, 2, 3, 5, 8, 13, …

  36. Fibonacci Numbers int fibonacci(int n) { if(n == 0 || n == 1) return n; else return fibonacci(n-1) + fibonacci(n-2); }

  37. Fibonacci Numbers: Computing F(5)

  38. Fibonacci Numbers: Computing F(5) F(5) = active

  39. Fibonacci Numbers: Computing F(5) F(5) F(4)

  40. Fibonacci Numbers: Computing F(5) F(5) F(4) F(3)

  41. Fibonacci Numbers: Computing F(5) F(5) F(4) F(3) F(2)

  42. Fibonacci Numbers: Computing F(5) F(5) F(4) F(3) F(2) F(1)

  43. Fibonacci Numbers: Computing F(5) F(5) F(4) F(3) F(2) F(1)

  44. Fibonacci Numbers: Computing F(5) F(5) F(4) F(3) F(2) F(1) F(0)

  45. Fibonacci Numbers: Computing F(5) F(5) F(4) F(3) F(2) F(1) F(0)

  46. Fibonacci Numbers: Computing F(5) F(5) F(4) F(3) F(2) F(1) F(0)

  47. Fibonacci Numbers: Computing F(5) F(5) F(4) F(3) F(2) F(1) F(1) F(0)

  48. Fibonacci Numbers: Computing F(5) F(5) F(4) F(3) F(2) F(1) F(1) F(0)

  49. Fibonacci Numbers: Computing F(5) F(5) F(4) F(3) F(2) F(1) F(1) F(0)

  50. Fibonacci Numbers: Computing F(5) F(5) F(4) F(3) F(2) F(2) F(1) F(1) F(0)

More Related