1 / 37

RISING: Rare Isotope Spectroscopic INvestigation at GSI

Univ. Santiago de Compostela Univ. Madrid Univ. Valencia. CLRC Daresbury Univ. Keele Univ. Liverpool Univ. Manchester Univ. Paisley Univ. Surrey Univ. York. FZ Juelich FZ Rossendorf GSI Darmstadt HMI Berlin LMU Muenchen MPI Heidelberg TU Darmstadt Univ. Bonn Univ. Koeln.

hong
Télécharger la présentation

RISING: Rare Isotope Spectroscopic INvestigation at GSI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Univ. Santiago • de Compostela • Univ. Madrid • Univ. Valencia • CLRC Daresbury • Univ. Keele • Univ. Liverpool • Univ. Manchester • Univ. Paisley • Univ. Surrey • Univ. York • FZ Juelich • FZ Rossendorf • GSI Darmstadt • HMI Berlin • LMU Muenchen • MPI Heidelberg • TU Darmstadt • Univ. Bonn • Univ. Koeln • Univ. Milano • INFN Genova • INFN Legnaro • INFN/Univ. Napoli • INFN/Univ. Padova • Univ. Camerino • Univ. Firenze • IFIN, Bucharest • CEA Saclay • CSNSM Orsay • GANIL Caen • IPN Orsay • KTH Stockholm • Univ. Lund • Univ. Uppsala • IFJ Krakow • IPJ Swierk • Univ. Krakow • Univ. Warszawa • KU Leuven • NBI Copenhagen RISING: Rare Isotope Spectroscopic INvestigation at GSI M. Górska, GSI Darmstadt OPEN COLLABORATION • Australian Nat. • Univ., Canberra

  2. Introduction RISING nuclear structure goals isospin symmetry shell evolution far from stability astrophysical interests Experimental tools Results on exotic nuclei Future at FAIR Outline

  3. r-Process and Supernovae RISING: Nuclear structure interest Isospin competition/symmetry |Tz|=T =1: Iπ=0+ Sp=0 T=0 : Iπ=1+or (2j)+ rp-Process Novae and X-ray bursts N=Z Sn=0 Shell evolution/quenching Proton number Neutron number

  4. Shell structure:Experimental evidence for magic numbers close to stability Nuclei with magic number of neutrons/protons have 21+ state at higher energy low value of B(E2: 21+→0+) transition probability If we move away from stability?

  5. j< neutron j> j’< proton j’> Shell evolution away from stability 3212Mg20 4020Ca20 T. Otsuka et al., PRL 87, 082502 (2001) T. Otsuka et al., PRL 95, 232502 (2005)

  6. stable nucleus neutron rich nucleus Shell quenching for very n-rich nuclei Potential shape: Wood Saxon (WS) → Harmonic Oscillator (HO) T.R. Werner, J. Dobaczewski, W. Nazarewicz, Z. Phys. A358 (1997) 169 need for radioactive nuclear beams

  7. Primary beam/reaction selection

  8. Accelerator facility at GSI • The Accelerators: • UNILAC(injector) E=11.4 MeV/n • SIS 18Tmcorr. U 1 GeV/n • Beam Currents: • 238U - 108 pps • some medium mass nuclei- 109 pps • (A~130) γ spectroscopy setup: • FRS provides secondary radioactive ion beams: • fragmentation or fission of primary beams • high secondary beam energies: 100 – 700 MeV/u • fully stripped ions

  9. Secondary beam production spectroscopy selection <1GeV/u identification reaction identification 100-700MeV/u 35m Bρ - ∆E - Bρ CATE SI-CsI

  10. RISINGexperiment types “beam cocktail” or almost pure beam (238U fission fragments recorded at the FRS) • experiments at β=0.5-0.7 • decay experiments Each type of experiments requires a dedicated Ge-detector arrangement !

  11. Ge Cluster Ge Miniball RISING g-array for fast beams Typically: 100MeV/u, εg=0.06, ∆Eg/Eg=0.02 Target chamber CATE beam

  12. Y Z X A/Q DE Y E X Secondary beam and fragment IDbefore the target after the target

  13. 84Kr (113 AMeV) + Au (0.4 g/cm2) CATE g MW MW Si CsI Target Counts Qg 882 Qp FWHM ~ 1.5 % Counts Eg [keV] 84Kr 2+® 0+ Eg [keV] Scattering angle • reaction selection • g-ray Doppler shift correction

  14. Radioactive beam Coulomb excitation T.R. Saito et.al. submitted to PRC 10% error bar in B(E2) 136Nd 21+ 0+ First observation of a second excited 2+ state populated in a Coulomb experiment at 100AMeV using RISING Counts 22+ 21+ 22+ 0+ Energy [keV]

  15. RISING: Fast beam campaign - physics focus convener: P. Reiter, University of Cologne (submitted to PRC) Coulex in triaxial nuclei 136Nd (PRC) 2005 Coulex in nuclei towards 100Sn (submitted to EPJA) Spectroscopy of mirror nuclei (A~50) via two-step fragmentation PRL in preparation Pigmy resonance in n-rich nuclei (PLB in print) (PLB) 2005 Spectroscopy of 36Ca via two-step fragmentation Coulex in n-rich Cr isotopes

  16. Shell evolution: Cr isotopes Prediction of new subshell closures in N=32,34 GXPF1 KB3G GXPF1A E(2+) New Shell gap ? Courtesy: T. Otsuka

  17. Coulomb excitation in N=30-34 Cr A. Bürger et al., Phys. Lett B622, 29 (2005) Calculations: GXPF1: T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001) GXPF1A: T. Otsuka et al., Eur. Phys. J. A 13,69 (2002) KB3G: E. Caurier et al., Eur. Phys. J. A 15, 145 (2002)

  18. Mirror (Isospin) symmetry in T=2 36S – 36Ca • Is N=20 shell quenching in 32Mg20 • symmetric in isospin projection Tz? • shell evolution • small neutron binding energy N=Z 14O 16O 14C

  19. 36Ca E(2+) in secondary fragmentation P. Doornenbal PhD thesis, Phys. Lett. B, in print 2+ 3015(16) keV MED: ∆EM = Ex(I, Tz=-T) – Ex(I, Tz=+T) = 36Ca E(2+)- 36S E(2+) = - 276(16) keV !!! In agreement with USD1 calculation using ESPE from 17O and 17F Reason for the displacement: structure - reduction of Z=20 shell gap coupling to continuum ( small proton binding energy) [1] B.A. Brown, B.H. Wiedenthal: Ann. Rev. of Nucl. Part. Sci. 38, 29 (1988)

  20. Experiments with Stopped Beams production selection spectroscopy identification stopping Ge- array

  21. Stopped Rising Array @ GSI: 15 x 7 element CLUSTERs εγ=11% at 1.3 MeV, 20% at 550 keV, 35% at 100 keV flight time ~300ns

  22. RISING: Stopped beams focus Convenor: P. Regan, University of Surrey PRL, in prep. PRL, in prep. PRL, in prep. Nature, submitted

  23. Gamma Energy-Time Correlations D. Rudolph, Lund University

  24. Mirror pair 54Ni and 54Fe D. Rudolph, Lund University

  25. Astrophysics relevance for n-rich nuclei 204Pt 130Cd b:Dillman et al., PRL, 91, 162503 (2003) 2+::Kautzsch, T. et al. Eur. Phys. J. A9, 201-206 (2000) Langanke, K. & Martínez-Pinedo, G. Rev. Mod. Phys.75, 819-862 (2003)

  26. 2.59 2.61 2.63 2.65 2.67 2.69 2.71 130Cd from fission and fragmentation A. Jungclaus et al., Nature, submitted Lucia Caceres and Ewa Werner-Malento PhD theses gg-coincidences

  27. 130Cd level scheme and A-1 scaling SM: F. Nowacki, G. Martínez-Pinedo et al.

  28. 20478Pt126: 4 proton holes in 208Pb experiment and theory Zs. Podolyák, Surrey University Problems: states with πd5/21 order of πd3/2-1h11/2-1 and πs1/2-1h11/2-1 ? 206Hg 204Pt 80 126 78 126 → description of the observed states requires SPE or INT modification

  29. Stopped Beam - Active Stopper P.H. Regan (convenor) implantation-particle decay correlation 3 double-side silicon-strip detectors - surface 5x5 cm2 - thickness 1 mm - 2 x 16 3.125 mm strips - manufactured by MICRON

  30. New result from yesterday evening P. Regan et al., University of Surrey 190Ta:ion gatedb delayed g-ray spectrum T1/2 ~ 16s 2+ in 190W

  31. SIS 100/300 SIS UNILAC FRS ESR HESR Super FRS CR NESR RESR The Future International Facility at GSI:FAIR - Facility for Antiproton and IonResearch Nuclear Matter Physics with 35-45 GeV/u HI beams NUclear STructure, Astrophysics and Reactions with radioactive beams Plasma Physics with compressed ion beams & high- intensity (petawatt) laser Hadron Physics with antiprotons High EM Field (HI) --- Fundamental Studies (HI & p) Applications (HI) 100 m

  32. 300 300 300: 300 300 Expected rates of rare isotope beams at FAIR SFRS facility

  33. Physics Example: the Zr isotopes (Z=40) 90Zr50104Zr64110Zr70122Zr82 spherical deformed (β=0.45) spherical ? Coulomb excitation Decay 32/s 0.05/day Lifetime: >1 s 1.2 s <1 s T.R. Werner, J. Dobaczewski, W. Nazarewicz, Z. Phys. A358 (1997) 169

  34. NEUTRON DETECTOR GE γ-ARRAY RADIOACTIVE BEAM NUSTAR@FAIRHISPECDESPEC(fast, slow beams) (stopped beams) AGATA + ancillary detectors Magnetic Spectrometer Selectivity and sensitivity improvement ~103

  35. Summary 2003-2005Scattering experiments: shell evolution in neutron rich and neutron deficient nuclei isospin symmetry around N=Z shapes collective excitations 2005g-RISING: magnetic moment measurements 2006 Decay experiments: many new isomeric states! reaching r-process path 2007Active stopper – first results! Future: experiments at FAIR/SFRS: e.g. >110Zr...HISPEC/DESPEC Towards new phenomena at the limits of nuclear existence!

  36. A. Banu(Texas I&M), C. Fahlander(Lund), D. Rudolph (Lund), A. Poves(Madrid),F. Nowacki(Strasbourg), A. Bürger(Bonn), P. Reiter(IKP Köln), H. Hübel(Bonn), P. Doornenbal(GSI/Köln), P.Regan(Surrey), H. Grawe(GSI), L.Caceres(GSI/Madrid), A. Bracco(Milan), J. Jolie(Köln), P. Nolan(Daresbury), F. Camera(Milan), G. Neyens(Leuven), D. Balabanski(Sofia), S. Steer(Surrey), R. Hoischen(Lund), T. Otsuka(Tokyo), S. Pietri(Surrey), M. Hjorth-Jensen(Oslo), A. Garnworthy(Surrey), A. Jungclaus(Madrid), M. Pfützner(Warsaw), Zs. Podolyak(Surrey), E. Werner-Malento(GSI/Warsaw), H.J. Wollersheim (GSI), J.Gerl (GSI)...and many others For the RISING collaboration Collaboration

More Related