1 / 30

Maximum Flow and Minimum Cut: Algorithm for Flow Networks

Learn about the concepts of maximum flow and minimum cut in flow networks, and how they can be solved using algorithms. Explore applications in various domains such as transportation, data mining, and network reliability.

hoy
Télécharger la présentation

Maximum Flow and Minimum Cut: Algorithm for Flow Networks

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. COMP 482: Design and Analysis of Algorithms Prof. Swarat Chaudhuri Spring 2012 Lecture 18

  2. Soviet Rail Network, 1955 Reference: On the history of the transportation and maximum flow problems.Alexander Schrijver in Math Programming, 91: 3, 2002.

  3. Max flow and min cut. Two very rich algorithmic problems. Cornerstone problems in combinatorial optimization. Beautiful mathematical duality. Nontrivial applications / reductions. Data mining. Open-pit mining. Project selection. Airline scheduling. Bipartite matching. Baseball elimination. Image segmentation. Network connectivity. Network reliability. Distributed computing. Egalitarian stable matching. Security of statistical data. Network intrusion detection. Multi-camera scene reconstruction. Many many more . . . Maximum Flow and Minimum Cut

  4. Minimum Cut Problem • Flow network. • Abstraction for material flowing through the edges. • G = (V, E) = directed graph, no parallel edges. • Two distinguished nodes: s = source, t = sink. • c(e) = capacity of edge e. 2 5 9 10 15 15 10 4 source sink 5 s 3 6 t 8 10 15 4 6 10 15 capacity 4 7 30

  5. Cuts • Def. An s-t cut is a partition (A, B) of V with s  A and t B. • Def. The capacity of a cut (A, B) is: 2 5 9 10 15 15 10 4 5 s 3 6 t 8 10 A 15 4 6 10 15 Capacity = 10 + 5 + 15 = 30 4 7 30

  6. Cuts • Def. An s-t cut is a partition (A, B) of V with s  A and t B. • Def. The capacity of a cut (A, B) is: 2 5 9 10 15 15 10 4 5 s 3 6 t 8 10 A 15 4 6 10 15 Capacity = 9 + 15 + 8 + 30 = 62 4 7 30

  7. Minimum Cut Problem • Min s-t cut problem. Find an s-t cut of minimum capacity. 2 5 9 10 15 15 10 4 5 s 3 6 t 8 10 15 4 6 10 A 15 Capacity = 10 + 8 + 10 = 28 4 7 30

  8. 2 5 9 10 15 15 10 4 5 s 3 6 t 8 10 15 4 6 10 15 4 7 30 Flows • Def. An s-t flow is a function that satisfies: • For each e  E: (capacity) • For each v  V – {s, t}: (conservation) • Def. The value of a flow f is: 0 4 0 0 0 4 0 4 4 0 0 0 0 capacity flow 0 0 Value = 4

  9. 2 5 9 10 15 15 10 4 5 s 3 6 t 8 10 15 4 6 10 15 4 7 30 Flows • Def. An s-t flow is a function that satisfies: • For each e  E: (capacity) • For each v  V – {s, t}: (conservation) • Def. The value of a flow f is: 6 10 6 0 0 4 3 8 8 1 10 0 0 capacity flow 11 11 Value = 24

  10. 2 5 9 10 15 15 10 4 5 s 3 6 t 8 10 15 4 6 10 15 4 7 30 Maximum Flow Problem • Max flow problem. Find s-t flow of maximum value. 9 10 9 1 0 0 4 9 8 4 10 0 0 capacity flow 14 14 Value = 28

  11. Flows and Cuts • Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s. 6 2 5 9 10 6 0 10 15 15 0 10 4 4 3 8 8 5 s 3 6 t 8 10 A 1 10 15 0 0 4 6 10 15 11 11 Value = 24 4 7 30

  12. Flows and Cuts • Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s. 6 2 5 9 10 6 0 10 15 15 0 10 4 4 3 8 8 5 s 3 6 t 8 10 A 1 10 15 0 0 4 6 10 15 11 Value = 6 + 0 + 8 - 1 + 11= 24 11 4 7 30

  13. Flows and Cuts • Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s. 6 2 5 9 10 6 0 10 15 15 0 10 4 4 3 8 8 5 s 3 6 t 8 10 A 1 10 15 0 0 4 6 10 15 11 Value = 10 - 4 + 8 - 0 + 10= 24 11 4 7 30

  14. Flows and Cuts • Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then • Pf. by flow conservation, all termsexcept v = s are 0

  15. Flows and Cuts • Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut. Cut capacity = 30  Flow value  30 2 5 9 10 15 15 10 4 5 s 3 6 t 8 10 A 15 4 6 10 15 Capacity = 30 4 7 30

  16. Flows and Cuts • Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we havev(f) cap(A, B). • Pf. • ▪ A B 4 8 t s 7 6

  17. Certificate of Optimality • Corollary. Let f be any flow, and let (A, B) be any cut.If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut. Value of flow = 28Cut capacity = 28  Flow value  28 9 2 5 9 10 9 1 10 15 15 0 10 0 4 4 9 8 5 s 3 6 t 8 10 4 10 15 0 A 0 4 6 10 15 14 14 4 7 30

  18. Q1: True or false? • Let G be an arbitrary flow network, with a source s, a sink t, and a positive integer capacity ce on every edge. If f is a maximum s-t flow in G, then f saturates every edge out of s with flow (i.e., for all edges e out of s, we have f(e) = ce). • Let G be an arbitrary flow network, with a source s, a sink t, and a positive integer capacity ce on every edge e. Let (A, B) be a minimum s-t cut with respect to these capacities. Now suppose we add 1 to every capacity; then (A, B) is still a minimum s-t cut with respect to these new capacities.

  19. Answer • False. 1 2 1 t s 2 2

  20. Answer • 2. False 1 1 1 1 1 4 w s t 1 1 1 2

  21. Towards a Max Flow Algorithm • Greedy algorithm. • Start with f(e) = 0 for all edge e  E. • Find an s-t path P where each edge has f(e) < c(e). • Augment flow along path P. • Repeat until you get stuck. 1 0 0 20 10 30 0 t s 10 20 Flow value = 0 0 0 2

  22. Towards a Max Flow Algorithm • Greedy algorithm. • Start with f(e) = 0 for all edge e  E. • Find an s-t path P where each edge has f(e) < c(e). • Augment flow along path P. • Repeat until you get stuck. 1 20 0 0 X 20 10 20 30 0 t X s 10 20 Flow value = 20 20 0 0 X 2

  23. Towards a Max Flow Algorithm • Greedy algorithm. • Start with f(e) = 0 for all edge e  E. • Find an s-t path P where each edge has f(e) < c(e). • Augment flow along path P. • Repeat until you get stuck. locally optimality  global optimality 1 1 20 0 20 10 20 10 20 10 30 20 30 10 t t s s 10 20 10 20 0 20 10 20 2 2 greedy = 20 opt = 30

  24. Residual Graph • Original edge: e = (u, v)  E. • Flow f(e), capacity c(e). • Residual edge. • "Undo" flow sent. • e = (u, v) and eR = (v, u). • Residual capacity: • Residual graph: Gf = (V, Ef ). • Residual edges with positive residual capacity. • Ef = {e : f(e) < c(e)}  {eR : c(e) > 0}. capacity u v 17 6 flow residual capacity u v 11 6 residual capacity

  25. Ford-Fulkerson Algorithm 2 4 4 capacity G: 6 8 10 10 2 10 s 3 5 t 10 9

  26. Augmenting Path Algorithm Augment(f, c, P) { b  bottleneck(P) foreach e  P { if (e  E) f(e)  f(e) + b else f(eR)  f(e) - b } return f } forward edge reverse edge Ford-Fulkerson(G, s, t, c) { foreach e  E f(e)  0 Gf residual graph while (there exists augmenting path P) { f  Augment(f, c, P) update Gf } return f }

  27. Max-Flow Min-Cut Theorem • Augmenting path theorem. Flow f is a max flow iff there are no augmenting paths. • Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the max flow is equal to the value of the min cut. • Proof strategy. We prove both simultaneously by showing that the following are equivalent: (i) There exists a cut (A, B) such that v(f) = cap(A, B). (ii) Flow f is a max flow. (iii) There is no augmenting path relative to f. • (i)  (ii) This was the corollary to weak duality lemma. • (ii)  (iii) We show contrapositive. • Let f be a flow. If there exists an augmenting path, then we can improve f by sending flow along path.

  28. Proof of Max-Flow Min-Cut Theorem • (iii)  (i) • Let f be a flow with no augmenting paths. • Let A be set of vertices reachable from s in residual graph. • By definition of A, s  A. • By definition of f, t A. A B t s original network

  29. Running Time • Assumption. All capacities are integers between 1 and C. • Invariant. Every flow value f(e) and every residual capacities cf (e) remains an integer throughout the algorithm. • Theorem. The algorithm terminates in at most v(f*)  nC iterations. • Pf. Each augmentation increase value by at least 1. ▪ • Corollary. If C = 1, Ford-Fulkerson runs in O(mn) time. • Integrality theorem. If all capacities are integers, then there exists a max flow f for which every flow value f(e) is an integer. • Pf. Since algorithm terminates, theorem follows from invariant. ▪

  30. Q2: Mobile computing • Consider a set of mobile computing clients in a certain town who each needed to be connected to one of several base stations. We’ll suppose there are n clients, with the position of each client specified by its (x,y) coordinates. There are also k base stations, each of them specified by its (x,y) coordinates as well. • For each client, we want to connect it to exactly one of the base stations. We have a range parameter r—a client can only be connected to a base station that is within distance r. There is also a load parameter L—no more than L clients can be connected to a single base station. • Your goal is to design a polynomial-time algorithm for the following problem. Given the positions of the clients and base stations as well as the range and load parameters, decide whether every client can be connected simultaneously to a base station.

More Related