1 / 56

Artificial Intelligence Laboratory & Laboratory for Information and Decision Systems

A Unified Multiresolution Framework for Automatic Target Recognition. Eric Grimson, Alan Willsky, Paul Viola, Jeremy S. De Bonet, and John Fisher. Artificial Intelligence Laboratory & Laboratory for Information and Decision Systems Massachusetts Institute of Technology. Outline.

ilario
Télécharger la présentation

Artificial Intelligence Laboratory & Laboratory for Information and Decision Systems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MIT AI Lab / LIDS A Unified Multiresolution Framework for Automatic Target Recognition Eric Grimson, Alan Willsky, Paul Viola, Jeremy S. De Bonet, and John Fisher Artificial Intelligence Laboratory & Laboratory for Information and Decision Systems Massachusetts Institute of Technology

  2. MIT AI Lab / LIDS Outline • Review Multiresolution Analysis Models • MAR (Multiresolution Auto-Regressive) • MNP (Multi-scale Nonparametric) • Applications of MNP Models • Classification/Recognition • Segmentation and Multi-Look Registration • Synthesis and Super-Resolution • Continuing Efforts

  3. MIT AI Lab / LIDS MAR Processes for SAR Irving, Willsky & Novak Pyramid Residuals

  4. MIT AI Lab / LIDS Intuition: Construct a Model for the Scale-to-scale Dependency in SAR imagery L0 Parent Vector L1 V(x,y)={} L2 L3 L4

  5. MIT AI Lab / LIDS Build a Model for Observed Distribution IWN: Conditionally Gaussian

  6. MIT AI Lab / LIDS

  7. MIT AI Lab / LIDS Multi-scale Non-parametric Models • Two key insights: • Alternative multi-scale representation • Sub-band oriented representations (Wavelets, Gabor Filters) • Non-parametric models of conditional dependence De Bonet & Viola (1997)

  8. MIT AI Lab / LIDS Steerable Pyramids Freeman and Simoncelli

  9. MIT AI Lab / LIDS …for a SAR image

  10. MIT AI Lab / LIDS Multiresolution parent vector Parent Vector V(x,y)={} coarse fine

  11. MIT AI Lab / LIDS Build a Model for Observed Distribution DB: Non-parametric Distribution

  12. MIT AI Lab / LIDS Probabilistic Model Markov Conditionally Independent Successive Conditioning

  13. MIT AI Lab / LIDS Estimating Conditional Distributions • Non-parametrically

  14. MIT AI Lab / LIDS Outline synthesis sample registration discrimination distribution Likelihood Similarity example image segmentation denoising distribution condition super resolution

  15. MIT AI Lab / LIDS Capturing Structure (Texture Perspective)

  16. MIT AI Lab / LIDS Synthesis Results

  17. MIT AI Lab / LIDS Synthesis Results

  18. MIT AI Lab / LIDS

  19. MIT AI Lab / LIDS Alternative 1: Gaussian Distribution: GMRF Chellappa and Chattergee

  20. MIT AI Lab / LIDS

  21. MIT AI Lab / LIDS Alternative 2: Statistical Wavelet Models Bergen and Heeger Donoho Simoncelli and Adelson

  22. MIT AI Lab / LIDS Heeger and Bergen Texture Synthesis Model

  23. MIT AI Lab / LIDS Heeger and Bergen Texture Synthesis Model

  24. MIT AI Lab / LIDS Analysis Synthesis Sampling Procedure original texture patch synthesized texture patch

  25. MIT AI Lab / LIDS Not quite right... Very similar to a Gaussian Model (i.e. no phase alignment)

  26. MIT AI Lab / LIDS Wavelet Representation of Edges Wavelet Transform

  27. MIT AI Lab / LIDS Pyramid Representation

  28. MIT AI Lab / LIDS Conditional Distributions Wavelet Transform

  29. MIT AI Lab / LIDS Analysis Synthesis Sampling Procedure synthesized texture patch original texture patch

  30. MIT AI Lab / LIDS Multiresolution progression

  31. MIT AI Lab / LIDS

  32. MIT AI Lab / LIDS Joint feature occurrence across resolution

  33. MIT AI Lab / LIDS Joint feature occurrence across resolution

  34. MIT AI Lab / LIDS

  35. MIT AI Lab / LIDS

  36. MIT AI Lab / LIDS Texture Synthesis Results

  37. MIT AI Lab / LIDS Models BMP2-C21 BTR70-C71 T72-132 • Models for target vehicles were generated from example images: • generated from vehicles with different numbers from the target vehicles • only 10 examples, evenly distributed in heading angle • measured at a depression angle of 17degrees (targets were at 15 degrees)

  38. MIT AI Lab / LIDS BTR70-C71 Target vehicles • Five target vehicles were used. • Vehicles which differed from the target class were included as confusion targets. • There were roughly 200 images in each class. BMP2-9563 BMP2-9566 T72-812 T72-S7

  39. MIT AI Lab / LIDS ZIL131 ZSU23 Confusion vehicles Six additional confusion vehicles were used as well. T62 2S1 BRDM2 D7

  40. MIT AI Lab / LIDS BMP2-C21 BTR70-C71 T72-132 Flexible Histograms Template Matching De Bonet, Fisher and Viola

  41. MIT AI Lab / LIDS Measuring Visual Structure : Flexible Histogram II Rtie-point B (x,y)= 8 Rtest parent structure

  42. MIT AI Lab / LIDS Measuring Visual Structure : Flexible Histogram III Rlandmark B(,x,y)= 8 Rtie-point 2= (B-B’)2/B B’(x,y)= 3 Rtest

  43. MIT AI Lab / LIDS Tie-point determination Multiresolution alignment search Multiresolution texture match: flexible histograms Registration pipeline

  44. MIT AI Lab / LIDS Tie-point determination

  45. MIT AI Lab / LIDS Tie-point examples Here, only vehicles provide distinct landmarks. When present, roads and buildings provide useful landmarks as well.

  46. MIT AI Lab / LIDS Coarse to fine alignment Fine Coarse

  47. MIT AI Lab / LIDS Example Registration

  48. MIT AI Lab / LIDS Example Registration

  49. MIT AI Lab / LIDS Example Registration

  50. MIT AI Lab / LIDS

More Related