1 / 15

Real-World Sensor Network for Long-Term Volcano Monitoring: Design and Findings

Real-World Sensor Network for Long-Term Volcano Monitoring: Design and Findings. นาย พิสิษฐ์ เชื้อกิตติศักดิ์ รหัส 54660515 IST27.2 รายวิชา DISTRIBUTED SYSTEMS AND TECHNOLOGY. Introduction.

infinity
Télécharger la présentation

Real-World Sensor Network for Long-Term Volcano Monitoring: Design and Findings

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Real-World Sensor Network for Long-TermVolcano Monitoring: Design and Findings นายพิสิษฐ์ เชื้อกิตติศักดิ์ รหัส 54660515 IST27.2 รายวิชา DISTRIBUTED SYSTEMS AND TECHNOLOGY

  2. Introduction • Wireless sensor networks have the potential to greatly enhance the understanding of volcano hazards by permitting large distributed deployments of sensor nodes in difficult-to-reach or hazardous areas • Wireless networking allows sensor nodes to communicate with each other and to a central base station via a self-healing mesh network • The sensor network must be able to run continuously with zero maintenance for a long period in a hostile volcanic environment. • Sensor network has been deployed and tested on Mount St. Helens since July 2009, as part of the Optimized Autonomous Space In-situ Sensorweb (OASIS) system

  3. System Overview • Fig. 1 illustrates the end-to-end configuration of the full OASIS system. The ground sensor network delivered real-time volcanic signals to the sink nodes at Johnston Ridge Observatory (JRO) through multihop relays.

  4. System Overview (Cont.) • Fig. 2 shows the location of 13 OASIS stations deployed into the crater and around the flank of Mount St. Helens Volcano in July2009. • The sink nodes are connected to the gateway through serial connection.

  5. System Overview (Cont.) • The gateway (MOXA device server DE-304) relayed the data stream to a WSUV server through a microwave link of 50 miles • TinyOS tool SerialForwarder in WSUV server forward the data between the sensor network and the Internet. Multiple control clients may connect to it, access the sensor data stream, and control the network in real-time • V-alarm is a volcano activity alarm system, which can automatically identify earthquake events from the raw data stream

  6. System Overview (Cont.) • The Command and Control center is for situation awareness and integration of in-situ sensor network and space observations from EO-1 satellite. • The real-time data stream from seismic, infrasonic, lightning, and GPS sensors, as well as RSAM, battery voltage and Received Signal Strength Indicator (RSSI)/Link Quality Indicator (LQI) data, are imported into a MYSQL database with UTC timestamps of millisecond resolution. In connection with the database, a web application Volcano Analysis and Visualization Environment (VALVE)

  7. HARDWARE DESIGN • Fig. 3 shows the OASIS station. A wireless mote iMote2 is the core of OASIS station. iMote2’s PXA271 processor is configured to operate in a low voltage (0.85 V) and low frequency (13 MHz) mode. Each station contains a GPS receiver (U-Blox LEA-4T L1) to pinpoint the exact location and measure subtle ground deformation, a seismometer to detect earthquakes, an infrasonic sensor to detect volcanic explosions, and a lightning sensor to detect eruption clouds.

  8. ROBUSTNESS AND REMOTE NETWORK MANAGEMENT • Automatic Fault Detection and Recovery • Remote Command and Control • Configurable Sensing • Over-the-Air Network Reprogramming

  9. QUALITY-AWARE DATA COLLECTION • Priority-Aware Data Delivery จัดความสำคัญของข้อมูลใช้ Quality of Service (QOS) ใช้ STA/LTA (short-term average over long-term average) algorithm • Reliable Event Data Collection การเกิดแผ่นดินไหว และข้อมูลจาก RSAM ในการศึกษาภูเขาไฟมีการพัฒนา Reliable Data Transfer (RDT) protocol ใช้ในการส่งข้อมูลที่มีความสำคัญมากสุดจากข้อ 5.1

  10. QUALITY-AWARE DATA COLLECTION (Cont.) • Network Throughput Improvement ได้มีการปรับปรุง TDMA MAC protocol เพิ่มเติมขึ้นมาใหม่แล้วเรียกว่า TreeMAC protocol เพื่อเพิ่ม throughput

  11. SYSTEM EVALUATION AND FINDINGS • Data Quality Evaluation

  12. SYSTEM EVALUATION AND FINDINGS (Cont.) • Event Detection Accuracy

  13. SYSTEM EVALUATION AND FINDINGS (Cont.) • System Failures and Diagnosis

  14. SYSTEM EVALUATION AND FINDINGS (Cont.) • Link Quality and Network Connectivity

  15. Real-World Sensor Network for Long-Term Volcano Monitoring: Design and Findings

More Related