1 / 31

How Can You Localize Sound?

How Can You Localize Sound?. Ponder this:

iola
Télécharger la présentation

How Can You Localize Sound?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. How Can You Localize Sound? • Ponder this: • Imagine digging two trenches in the sand beside a lake so that water can flow into them. Now imagine hanging a piece of cloth in the water in each trench. Your job is to determine the number and location and type of every fish, duck, person, boat, etc. simply by examining the motion of the cloth. That’s what your auditory system does! - Al Bregman

  2. Localization • All you have is a pair of instruments (basilar membranes) that measure air pressure fluctuations over time

  3. Localization • There are several clues you could use:

  4. Localization Left Ear Right Ear Compression Waves

  5. Localization • There are several clues you could use: • arrival time - sound arrives first at ear closest to source

  6. Localization Left Ear Right Ear Compression Waves

  7. Localization • There are several clues you could use: • arrival time • phase lag (waves are out of sync) - wave at ear farthest from sound source lags wave at ear nearest to source

  8. Localization Left Ear Right Ear Compression Waves

  9. Localization • There are several clues you could use: • arrival time • phase lag (waves are out of sync) - wave at ear farthest from sound source lags wave at ear nearest to source • Head shadow

  10. Localization • Arrival Time • Phase Lag • Head Shadow InterauralTiming Differences (ITD) InterauralIntensity Difference (IID)

  11. Localization • What are some problems or limitations?

  12. Localization • Low frequency sounds aren’t attenuated by head shadow because sound bends around the head with little loss of amplitude Sound is the same SPL at both ears Left Ear Right Ear Compression Waves

  13. Localization • Low frequency sounds aren’t attenuated by head shadow • Your brain preferentially uses ITD cues for low-frequency sounds

  14. Localization • High frequency sounds have ambiguous phase lag because more than one wavelength “fits” between the ears Left Ear Left Ear Right Ear Right Ear Two locations, same phase information!

  15. Localization • High frequency sounds have ambiguous phase lag • Your brain preferentially uses IID cues for high-frequency sounds

  16. Localization • These cues only provide azimuth (left/right) angle, not altitude (up/down) and not distance Left Ear Right Ear Azimuth

  17. Localization Additional cues:

  18. Localization Additional cues: Head Related Transfer Function: Pinnae modify the frequency components differently depending on sound location

  19. Localization Additional cues: Room Echoes: For each sound, there are 6 “copies” (in a simple rectanguluar room!). Different arrival times of these copies provide cues to location of sound relative to the acoustic space

  20. Localization • What would be the “worst case” scenario for localizing a sound?

  21. Pitch and Music

  22. Pitch • Pitch is the subjective perception of frequency Period - amount of time for one cycle Frequency - number of cycles per second (1/Period) Air Pressure time ->

  23. Pitch • Pure Tones - are sounds with only one frequency f = 400 hz f = 800 hz

  24. Tone Height • Tone Height is our impression of how high or low a sound is • but there’s something more to our impression of how something sounds than just its tone height…

  25. Chroma • Tone Chroma is the subjective impression of what a tone sounds like • Notes that have the same Chroma sound similar 500 Hz 400 hz 800 Hz

  26. Chroma • Tones that have the same Chroma are octaves apart

  27. Chroma • chroma is best represented as a helix • chroma repeats every octave • tones with the same chroma are above or below each other on a helix

  28. Chroma • Tones that are octaves apart have the same chroma • one octave is a doubling in frequency

  29. Chroma • frequency is determined (in part) by location of stimulation on the basilar membrane

  30. Chroma • frequency is determined (in part) by location of stimulation on the basilar membrane • but that relationship is not linear (it’s logarithmic)

  31. Chroma • doublings of frequency map to equal spacing on the basilar membrane

More Related