280 likes | 440 Vues
EE5900 Advanced Algorithms for Robust VLSI CAD. Dr. Shiyan Hu Office: EERC 731. The Wires. Adapted and modified from Digital Integrated Circuits: A Design Perspective by Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Modern Interconnect. Modern Interconnect - II.
E N D
EE5900 Advanced Algorithms for Robust VLSI CAD Dr. Shiyan Hu Office: EERC 731 The Wires Adapted and modified from Digital Integrated Circuits: A Design Perspective by Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic.
Interconnect Delay Dominates 300 250 Interconnect delay 200 150 Delay (psec) 100 Transistor/Gate delay 50 0 0.25 0.8 0.5 0.35 0.25 0.18 0.15 Technology generation (m) Source: Gordon Moore, Chairman Emeritus, Intel Corp.
Capacitor • A capacitor is a device that can store an electric charge by applying a voltage • The capacitance is measured by the ratio of the charge stored to the applied voltage • Capacitance is measured in Farads
3D Parasitic Capacitance • Given a set of conductors, compute the capacitance between all pairs of conductors. 1V + - - + + + - C=Q/V - + - - -
Simplified Model • Area capacitance (Parallel plate): area overlap between adjacent layers/substrate • Fringing/coupling capacitance: • between side-walls on the same layer • between side-wall and adjacent layers/substrate m3 m2 m2 m2 m1
The Parallel Plate Model (Area Capacitance) Capacitance is proportional to the overlap between the conductors and inversely proportional to their separation
Wire Capacitance • More difficult due to multiple layers, different dielectric =8.0 m3 multiple dielectric =4.0 m2 m2 m2 =3.9 =4.1 m1
Simple Estimation Methods - I • C = Ca*(overlap area) +Cc*(length of parallel run) +Cf*(perimeter) • Coefficients Ca, Cc and Cf are given by the fab • Cadence Dracula • Fast but inaccurate
Simple Estimation Methods - II • Consider interaction between layer i and layers i+1, i+2, i–1 and i–2 • Consider distance between conductors on the same layer • Cadence Silicon Ensemble • Accuracy 50%
Library Based Methods • Build a library of tens of thousands of patterns and compute capacitance for each pattern • Partition layout into blocks, and match with the library • Accuracy 20%
Accurate Methods In Industry • Finite difference/finite element method • Most accurate, slowest • Raphael • Boundary element method • FastCap, Hicap
Fringing versus Parallel Plate Fringing/Coupling capacitance dominates.
Wire Resistance • Basic formula R=(/h)(l/w) • : resistivity • h: thickness, fixed for a given technology and layer number • l: conductor length • w: conductor width l h w
Contact and Via • Contact: • link metal with diffusion (active) • Link metal with gate poly • Via: • Link wire with wire • Overlapping two layers (diffusion, gate poly or metal) and providing a contact hole filled with metal • Substrate Contact and Well Contact: • Link substrate or well to supply voltage
Analysis of Simple RC Circuit i(t) R v(t) vT(t) C ± state variable Input waveform
v0u(t) v0 v0(1-e-t/RC)u(t) Analysis of Simple RC Circuit Step-input response: match initial state: output response for step-input:
0.69RC • v(t) = v0(1 - e-t/RC) -- waveform under step input v0u(t) • v(t)=0.5v0 t = 0.69RC • i.e., delay = 0.69RC (50% delay) v(t)=0.1v0 t = 0.1RC v(t)=0.9v0 t = 2.3RC • i.e., rise time = 2.2RC (if defined as time from 10% to 90% of Vdd) • For simplicity, industry uses TD = RC (= Elmore delay) • We use both RC and 0.69RC in this course.
Elmore Delay • 50%-50% point delay • Delay=RC • (Precisely, 0.69RC) Delay
Elmore Delay - III What is the delay of a wire?
Elmore Delay – IV Assume: Wire modeled by N equal-length segments For large values of N: Precisely, should be 0.69RC/2
Elmore Delay - V n2 n1 n1 n2 C/2 C/2 R R=unit wire resistance*length C=unit wire capacitance*length
RC Tree Delay 4 4 2 2 7 2 7 24+4*2=32 3.5 1 2 1 3.5 Unit wire cap=1, unit wire res=1 2*(1+3.5+3.5+2+2)=24 24+7*3.5=48.5 Precisely, 0.69*48.5 RC Tree Delay=max{32,48.5}=48.5
Summary • Wire capacitance • Fringing/coupling capacitance dominates area capacitance • Wire resistance • RC Elmore delay model for wire • For single wire, 0.69RC/2 • RC tree