220 likes | 365 Vues
Join Pablo Yepes from Rice University as he discusses the advancements in heavy ion physics anticipated at the LHC. This presentation covers the expected heavy ion collisions at 7 TeV per charge and the unique capabilities of the CMS detector, designed primarily for proton-proton collisions but adaptable for heavy ion studies. Key topics include event characterization, quarkonium production (Upsilon and J/ψ), jet production, and ultra-peripheral collisions. Discover how CMS provides essential tools for investigating the complex phenomena of heavy ion collisions.
E N D
Heavy Ion Physics with CMS Pablo Yepes, Rice University for the CMS Collaboration Quark Matter Jan 16, 2001
What To Expect from LHC • LHC (Large Heavy ion Collider) is expected to provide pA and AA collisions. • Energy: 7 TeV/charge Luminosity
Stretching CMS Detector designed for pp. However due to flexible design offers unique capabilities for AA mm A minimum bias Pb-Pb event in CMS
Some CMS Assets • CMS has excellent muon detection capabilities: • |h|<1.3 for barrel and |h|<2.4 with endcaps. • Good mass resolution: 46 MeV for the Upsilon. • Efficient suppression of background from p/K decays: • Electromagnetic calorimeter at 1.3 m from beam axis. • PT threshold at 3.5 GeV/c for a single muon to reach the m-chambers. • Large calorimeter coverage with good jet reconstruction capabilities.
Physics Topics • Event Characterization • Quarkonium Production: Upsilon and J/Y • Zmm • Jet Production: • Single/Double jet ratios. • Z and g tagged jets • Ultra-Peripheral Collisions: gg and g-Pomeron
Event Characterization In spite of very strong magnetic field (4 Tesla) there is a good correlation between centrality and transverse energy.
Quarkonia Cross Sections Production Cross Sections for our studies • A scaling law: sAA= A2a spp • spp from CDF @ 1.8 TeV extrapolated to 5.5(7) TeV. • a=0.9(0.95) for J/Y (Upsilon).
Quarkonia Acceptance in m-Chambers J/Y • J/Y with • pT>5 GeV • in Barrel • Upsilon down to low transverse momentum Full Detector 10% Acceptance Barrel Pt(GeV) Upsilon 20% Full Detector Barrel
Quarkonia Reconstruction • Essential sub-detectors: • Tracking devices • Muon system • Pessimistic assumptions for background estimates: • dNch/dy=8000 (most generators < 5500) • <pt>p=0.48 GeV/c (HIJING 0.39 GeV/c) • <pt>k=0.67 GeV/c Special Heavy Ion Tracking Algorithm Significant Muon background from p and K decays
J/Y Signal Min bias collisions - 1 month run - barrel only muons with P > 3.5 GeV/c 1 month running at top Luminosity: J/Y’s detected and reconstructed in the Barrel: 4 10 Pb-Pb L= 1027 cm2 s-1 Y/cont.= 1.0 # events/25 MeV/c2 3 10 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 5 Ca-Ca L= 2.5 1029 cm2 s-1 10 Y/cont.= 9.7 # events/25 MeV/c2 4 10 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 Opposite-sign di-muon invariant mass (GeV/c2)
Upsilon in Pb-Pb L= 1027 cm-2 s-1 Upsilon/cont.= 1.6 104 7000 Total Combinatorial background subtracted after reconstruction # Events/25 MeV/c2 6000 Decay-Decay Decay-b 3 103 5000 b-b 4000 Decay-c 3000 2 102 2000 c-c 1000 0 8.5 8.75 9 9.25 9.5 9.75 10 10.25 10.5 10.75 11 8.5 8.75 9 9.25 9.5 9.75 10 10.25 10.5 10.75 11 Di-muon Invariant Mass (GeV/c2) 1 month: 22000 and 7500 ’ detected in the barrel # Events/25 MeV/c2 Opposite-sign di-muon Invariant Mass (GeV/c2) Background contributions
Upsilon in Ca-Ca L= 2.5 1029 cm-2s-1 Upsilon/cont.= 9.4 # Events/25 MeV/c2 105 Total 104 b-b Decay-Decay Decay-b 103 Decay-c 8.5 8.75 9 9.25 9.5 9.75 10 10.25 10.5 10.75 11 Opposite-sign di-muon invariant mass (GeV/c2) • 1 month: • 340000 • 115000 ’ • Only barrel used.
Quarkonia Reference • At SPS, J/Y is compared to Drell-Yan. • At LHC Drell-Yan contribution is negligible. • Z0 proposed as reference to production. • MZ>M • Different production mechanisms: • Z0: antiquark-quark, quark-gluon and antiquark-gluon. • : gluon-gluon. • Cross check di-muon reconstruction algorithm
Jets are Easy Jet quenching • monojet/dijet enhancement • jet-Z0mm or jet-g dNch/dy=8000 Jet Finding 100 GeV ET - e~100% - s(ET)/ET=11.6%. Total Calorimeter Energy f h
Balancing Photons and Jets <E>=0 GeV <E>=4 GeV Background <E>=8 GeV • Etjet, g>120GeV in the barrel • 1 month: • 900 events for Pb-Pb • 104 events for Ca-Ca 2 weeks at L=1027 cm-2s-1 # Events/4 GeV ETg//p0-ETJet (GeV)
Ultra-Peripheral Collisions 2 100 10 2 1 10 7 10 h e+e- ' p f 2 7 0 h 10 a 10-2 10 2 -2 5 10 - 1 h m+ m- 10 f ' c 2 c 5 hadrons -2 cc0 10 t+ t- 10-4 10 cc2 -4 -2 3 10 10 10 (barn) -4 3 H' 10-6 10 cc 10 h (M) (barn/GeV) b events/sec events/year -6 -4 events/year/GeV 10 events/sec/GeV 10 10 AA -6 h0b s 10 10 h2b 10 -1 10 -8 -6 10 10 -10 -8 10 10 -1 bb 10 AA -3 H 10 s SM -10 -8 10 10 -12 -10 10 10 -3 10 -5 10 -12 -10 10 10 -14 -12 10 10 -1 0 2 -5 10 10 10 10 10 -14 -12 M (GeV) 10 10 2 1 10 10 M (GeV) A A g orP Meson or lepton/quark pair g orP A A
Conclusions • CMS is provides unique tools to study Heavy Ion Collisions at LHC. • Physics considered: • Event characterization with large rapidity coverage. • Quarkonium production: and J/ families. • Jet quenching. • Ultra-Peripheral collisions.
Addendum: Tracking 60 • Developed for dNch/dy=8000 and dN0/dy=4000. • Track only particles with tracks in m detector. • Use m-chambers tracks as seeds. • Use only tracking detector providing 3D space points. Detector Pitch mm MSGC 200 50 MSGC 240 Silicon 147 40 Occupancy (%) 30 20 10 0 60 70 80 90 100 110 120 Radius of MSGC layer (cm)
LHC Parameters (Addendum) • Bunches 7.5 cm long every 125 ns.
Addendum: Upsilon Acceptance T dN /dp ¡ 3000 2000 1000 0 0 1 2 3 4 5 6 7 8 9 10 p (GeV/c) T 6000 dN /dy ¡ 4000 2000 0 -10 -8 -6 -4 -2 0 2 4 6 8 10 y h dN /d ¡ 4000 2000 0 -10 -8 -6 -4 -2 0 2 4 6 8 10 h 69