230 likes | 444 Vues
PMAS: The Potsdam Multiaperture Spectrophotometer. Ana Monreal Ibero. PMAS at the telescope. PMAS. LARR and PPaK. scale: 2.7 ”/spa f.o.v.: 74”x65” hexa. 331 resol. elements gaps between fibers 36 sky fibers. scale: 0.50, 0.75, 1.00 ”/spa f.o.v.: 8”x8”, 12”x12”, 16”x16”
E N D
PMAS: The Potsdam Multiaperture Spectrophotometer Ana Monreal Ibero
LARR and PPaK • scale: 2.7 ”/spa • f.o.v.: 74”x65” hexa. • 331 resol. elements • gaps between fibers • 36 sky fibers • scale: 0.50, 0.75, 1.00 ”/spa • f.o.v.: 8”x8”, 12”x12”, 16”x16” • 256 resol. elements • no gaps • no sky dedicated elements
x Special operation modes: nod-shuffle (I) ( “Va-et-Vient” spectroscopy, Cuillandre et al. 1994) • Without reading the CCD • Sky and object are observed simultaneously • Very accurate sky subtraction
Special operation modes: nod-shuffle (II) NGC6826 (Roth et al. 2004)
Some science done with PMAS (I) It has been used to observe a wide range of astronomical objects from our solar system to high redshift galaxies Jupiter with PPak (http://www.aip.de/highlight_archive/kelz_ppak/index.html)
Some science done with PMAS (II) Orion with PPak (Sánchez et al. 2007)
Some science done with PMAS (III) PNe in the galactic plane (Sandin et al. 2008)
Some science done with PMAS (IV) IIZw70: An HII galaxy with PMAS (Kehrig et al. 2008)
Some science done with PMAS (V) but many more… • Gravitational lenses (e.g. HE 0435-1223 Wisotzki et al. 2003) • Damped Lyman- systems (e.g. Christensen et al. 2004, 2007) • Ultraluminous X-ray sources (e.g. Lehmann et al. 2005) • GRB (e.g. Ferrero et al. 2008) • Supernovae (e.g. Christensen et al. 2003) • Galaxy clusters (e.g. Abell 2218, Sánchez et al. 2007) • PNe in other galaxies (e.g. M31, Roth et al. 2004) • Mass of the disk of spiral galaxies (e.g. Verheijen et al. 2004) • QSO host galaxies (e.g. Jahnke et al. 2004) • …
How PMAS data looks like (I)? Bias Arc Flat
How do I reduce PMAS? • IRAF • P3D • R3D
More about PMAS: • Roth et al. 2005, PASP, 117, 832 • Kelz et al. 2006, PASP, 118, 129 • http://www.aip.de/groups/opti/pmas/OptI_pmas.html • http://www.caha.es/sanchez/pmas/pmas.html
Super Star Clusters and SuperGalactic Winds • Starburst: ~hundreds M yr-1 of gas are transformed into stars in an small region in the nuclei of galaxies • Important impact on the host galaxy • Some of them expell material into the IGM: the SGW 1. HST reveals that these bursts appear in the form of SSCs (e.g. Melo et al. 2005) 2. 2D numerical hydrodynamics models in our group are able to explain the filamentary structure observed in M82 (Tenorio-Tagle et al. 2003) 3. Do the physical properties of the ionized gas fit in this picture? 4. Let´s determine them first!!!
Integral Field Spectroscopy Allington-Smith et al. 2000 • Homogeneity • Shorter exposure times Records simultaneously three variables (α, β and ) in two dimensions (x and y)