1 / 39

NEMO-3 Detector Preliminary results Performance of the detector

Journées Neutrinos 27-28 novembre 2003 LPNHE-Paris. NEMO Experiment Neutrino Ettore Majorana Observatory. NEMO-3 Detector Preliminary results Performance of the detector 2b2n analysis for 100 Mo, 82 Se and 150 Nd Background study for 2b0n research ( 208 Tl and Radon)

ita
Télécharger la présentation

NEMO-3 Detector Preliminary results Performance of the detector

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Journées Neutrinos 27-28 novembre 2003 LPNHE-Paris NEMO Experiment Neutrino Ettore Majorana Observatory • NEMO-3 Detector • Preliminary results • Performance of the detector • 2b2n analysis for 100Mo, 82Se and 150Nd • Background study for 2b0n research (208Tl and Radon) • Future of NEMO Xavier Sarazin for NEMO Collaboration

  2. NEMO Experiment Neutrino Ettore Majorana Observatory • Search for neutrinoless double beta decay • Study several isotopes • Mo100 , Se82 , Te130 , Cd116 , Zr96 , Ca48 , Nd150 • Tag and measure all the components of background • e-, e+, g, a, neutrons “zero background” experiment

  3. ( ) Double beta bb(0n) decay : Physics beyond the standard model • DL = 2 Process • Majorana Neutrino n =n and effective mass <mn> • Right-handed current in weak interaction • Majoron emission • SUSY particle exchange bb(0n) : 2n  2p+2e- p n W- e- neR h nM neL h e- W- n p (Qbb ~ MeV)

  4. NEMO-3 Detector Located in Modane Underground Laboratory • Sources: 20 m2, total mass ~ 10 kg, thickness ~ 60 mm • Tracking detector(6180 Geiger cells in He+alcohol): Vertex st=5 mm, sz = 1 cm • Calorimeter(1940 plastic scintillators+ PMTs low radioactivity)sE/E = 3% at 3 MeV • g and neutron shield: Iron shield (18 cm) + water shield + wood shield + parafin • magnetic field B=25 G • all materials low radioactivity(total activity in 208Tl and 214Bi  300 Bq) 1 sectorof NEMO3

  5. Cathodic rings Wire chamber PMTs Calibration tube scintillators bb isotope foils

  6. AUGUST 2001 June 2002 : tests runs February 2003 :beginning of data taking

  7. wood coil Iron shield Water tank

  8. Sources preparation

  9. Sources bb (thickness ~ 60 mg/cm2) bb(2n) Bkg 100Mo (6.9 kg) 82Se (0.93 kg) Qbb = 3034 keV Qbb = 2995 keV Sources in NEMO-3 detector

  10. Expected background and sensitivity 5 years of data Energy window: [2.8-3.2] MeV Efficiciency bb0n = 14% External and neutron background negligeable 1 kg of 82Se 7 kg of 100Mo Source contamination:A(214Bi) < 0.3 mBq/kg A(208Tl) < 0.02 mBq/kg Internal background:214Bi< 0.04evts/y/kg 208Tl < 0.04evts/y/kg bb(2n) 0.11evts/y/kg Source contamination:A(214Bi) =1.20.5 mBq/kg (measured) A(208Tl) = 0.40.1 mBq/kg Internal background:bb(2n) 0.01 evts/y/kg Hot spots: Pollution rejected Total Bkg < 1.4 event/year T1/2(0n) > 8.1024 y <mn> < 0.1 – 0.3 eV Bkg ~0 event/year T1/2(0n) > 1.5.1024 y <mn> < 0.6 – 1.2 eV

  11. NEMO-3 Preliminary Results • Performance of the detector • bb2n analysis for 100Mo, 82Se, 150Nd • Background analysis for bb0n search

  12. Data Tacking October 1st 2003 161 days of data tacking ~ 75 % efficiency Trigger: 1 PM > 150 keV 3 Geiger hits (2 neighbour layers + 1) Counting rate = 7.5 Hz Proportion of types of events in raw data: Days of data collecting / month Efficiency of data collecting / month

  13. Tracking Detector Performances • 0.5 % Geiger cells OFF • 97.5 % Geiger cells with 2 cathodic signals • Longitudinal propagation of Geiger plasma: • Efficiency > 93% for 90% of Geiger cells RAW DATA PROCESSED DATA

  14. Transversal and Longitudinal Resolution on the Vertex 207Bi sources at 3 well known positions in each sector (emission of two e- conversion at  1 and 0.5 MeV) 1 e- channel at 1 Mev: s (1 MeV) = 0.2 cm s// (1 MeV) = 0.7 cm (Z=0) 2e- channel (1 MeV+ 0.5 MeV) s (1 MeV) = 0.6 cm s// (1 MeV) = 1.8 cm (Z=0)

  15. 976 keV 207Bi FWHM = 135 keV 90Sr 482 keV End point 2,28 MeV Performances of the calorimeter Tube in each sector where calibration sources are introduced (3 positions) 3 electron energies : 486 keV and 976 keV with207Bi, and 2.28 MeV with90Sr At 1 MeV (Qbb3 MeV for 100Mo and 82Se):

  16. bb2n EVENT OBSERVED BY NEMO-3… E1+E2= 2088 keV (Dt)mes –(Dt)theo = 0.22 ns (Dvertex) = 2.1 mm (Dvertex)// = 5.7 mm bb2n event

  17. 100Mo 22 preliminary results (14 Feb. 2003 – 30 Sep. 2003) NEMO 3 Background substracted 22 Monte Carlo 160 days 75535 events S/B = 40 S/B(> 1 MeV)  100 T1/2 = 7.8 ± 0.09 (stat) ± 0.09 (syst)  1018 y

  18. HSD, higher levels contribute to the decay 1+ SSD, 1+ level dominates in the decay (Abad et al., 1984, Ann. Fis. A 80, 9) 100Tc 0+ 100Mo 0+ 100Mo 22 Single Energy Distribution Calculations for 100Mo: (Simkovic, J. Phys. G, 27,2233, 2001) Effect in one electron spectrum

  19. 100Mo 22 angular distribution Background substracted NEMO 3 22 Monte Carlo

  20. 82Se 22 preliminary results (14 Feb. 2003 – 30 Sep. 2003) Background substracted 22 Monte Carlo 3834 hours 1100 events S/B = 4.2 Contaminated with low energy -emitters Cuts: E > 300 keV Cos () < 0.7 T1/2 = 9.52 ± 0.25 (stat) ± 0.9 (syst)  1019 y

  21. 150Nd 22 preliminary results (June 2002 – 30 Sep. 2003) Background substracted 22 Monte Carlo 3834 hours 400 events S/B = 4.2 T1/2 = 7.5 ± 0.3 (stat) ± 0.7 (syst)  1018 y

  22. Origin of Background at high energy Two natural isotopes which have the greatest Qb values > 3 MeV: 214Bi : Qb  3.27 MeV 208Tl : Qb  4.99 MeV Design NEMO-3 detector for 10 kg: 214Bi in source foils < 0.3 mBq/kg 208Tl in source foils < 0.02 mBq/kg Total activity of the detector (200 tons)  300 Bq In the Modane Underground Laboratory: Fast neutron flux ( 1 MeV): 3.5 ± 1.5 10-6 n.cm-2s-1 Thermal neutron flux (~0.025 eV): 1.6 ± 0.1 10-6 n.cm-2s-1

  23. How NEMO-3 tags the background • Electron • Gamma : 50% efficiency at 1 MeV Energy Threshold = 30 keV • Time of Flight : Time Resolution  250 ps at 1 MeV • e+/e- separation with a magnetic field of 25 G 3% confusion at 1 MeV • Delayed tracks (<700 ms) to tag delayed a from Bi207 214Bi  214Po (164 ms)  210Pb

  24. channel e- (g) a with T1/2 (a) = 164 ms (214Bi - 214Po -210Pb) 214Bi Measurement of the sources of background channels e-g ’s with Eg= 2.6 MeV 212Bi 212Po e- (g) a T1/2(a)=300 ns 208Tl neutrons, external gammas e- crossing, e+e-, e-e- > 4 MeV

  25. BACKGROUND EVENTS OBSERVED BY NEMO-3… Electron + a delay track (164 ms) 214Bi 214Po 210Pb Electron crossing > 4 MeV Neutron capture  Electron – positron pair B rejection Electron + N g’s 208Tl (Eg = 2.6 MeV)

  26. Search for 208Tl background in the foils look for eg, e2g, e3g events coming from the foil 3800 h of data analysed 14 Feb. 2003 – 30 Sep. 2003 Tl cuts:E1 > 400 keV E2 > 1900 keV E > 200 keV MC:(Mo) = 0.16% 3.4 Rn events (3800 h.) for 20 sectors VERY PRELIMINARY Good agreement with the HPGe measurements

  27. Neutron and High-Energy gamma Background look for e-e- events > 4 MeV coming from the foil Only 1 bb0n-like event > 4 MeV detected after 160 days of data tacking ! (14 Feb. 2003 – 30 Sep. 2003) Run 2058 event 345966 26 March 2003 130Te source (sector 19) E1+E2 = 4448 keV

  28. Radon in NEMO-3 222Rn • Two different measurements of radon in the NEMO-3 gas: • Radon detector: • sensitivity: 1 count/day for 1 mBq/m3 • Radon measurement  20 mBq/m3 • (1e- + 1 a) channel in the NEMO-3 data: • Able to measure Radon every half day • Radon measurement  30 mBq/m3 214Po 218Po b a 164 ms 214Bi 210Pb 214Pb ~ a fewbb0n-likeevents due to radon, expected in 1 year !!! TOO HIGH !!! • A free Radon Tent surrounding the NEMO-3 detector in construction: • February 2004: 200 kg Charcoal • Factor ~ 8 for Radon purification • Spring 2004: Full Radon purification system • Factor ~ 100

  29. Run 2220, event 136.604, May 11th 2003 E1+E2= 2880 keV a bb0n-like event due to Radon from the gas a track (delay = 70 ms) 214Po 210Pb • 214Bi 214Po • decay IN THE GAS

  30. Free-Radon Purification System Today : A(222Rn) in the LSM ~10 Bq/m3 Fall 2003 : Tent surrounding the detector A(222Rn) ~ Bq/m3 Spring 2004 : Radon-free Gas Facory A(222Rn) ~ 0.2 Bq/m3 150 m3/h

  31. Sensitivity of NEMO3 to measure sources of background Design NEMO3 for 10 kg: 208 Tl in source foils < 0.02 mBq/kg 214 Bi in source foils < 0.3 mBq/kg neutron flux < 10-8n cm-2 s-1 Sensitivity NEMO3after 2 years of data: 208 Tl in source foils< 2 mBq/kg channel eg ’s (Eg = 2.6 MeV) 212 Bi  212 Po e(g)a (300 ns) 214 Bi in source foils< 2 mBq/kg measured by channel e (g) +a ( 214 Bi  214 Po  210 Pb; T1/2 = 164 ms ) neutrons< 10-9 n cm-2 s-1 measured by e- crossing > 4 MeV Sensitivity to 100 kg of isotopes

  32. Future for a NEMO Detector Tracking-Calorimeter Technique

  33. QD NEMO-3 IH QD NEMO-3 IH QD NEMO-3 IH Expected values of <mn> from neutrinos oscillations parameters Pascoli and Petcov, hep-ph/0310003 (best fit natm + nsol ) Quasi-Degenerate (QD): <mn> > 0.6 eV ~ Inverted Hierarchie (IH): 0.015 eV < <mn> < 0.6 eV ~ ~ Normal Hierarchie (NH): <mn> < 5. 10-3 eV ~ Next Generation of NEMO detector « detect » 1 gold event/year with <mn> ~ 20 meV

  34. ln2 . N . e . M Nbb0n / year = • M =k  100 kg of 100Mo or 82Se • e = 0.5 • Background = 0.1 event / year • 1 bb0n Gold event detected / year mn = 20 – 60 meV 0n A . T1/2 (y) 0n T1/2 = 2  k 1026 years Future of NEMO Number of bb0n event detected / year: N : Avogadro A : atomic mass M : mass (g) of bb enrich. Isotope e : detection efficiency Goal of a next NEMO detector: Real measurement with 1 GOLD EVENT / YEAR

  35. Future of NEMO • 3-4-5 December 2003: 1st meeting for Future of NEMO • Start working groups to prepare a design proposal for a future NEMO detector • Advantage of a Calo-Tracking approach: • Can measure several isotopes • Tag and measure all backgounds : zero background experiment • May detect « Gold events » • Start with realistic 100 kg isotope module… • could be extended to 1 ton with several modules) • Working groups: • R&D Calorimeter • R&D Tracking • Sources Enrichment (100Mo, 82Se, 150Nd…) • Purification sources • Simulation • Main challenges: • Energy resolution • Efficiency • Sources (enrichment, purification)

  36. FWHM (bb0n ray at 3 MeV)  350 keV one bb2n event/year expected in the bb0n energy window NEMO-3 (7 kg): • s2 (bb0n ray) = s2 (Calorimeter) + s2 (dE/dX in foil) + s2 (dE/dX in tracking) • CALORIMETER: separate e-/g measurement to improve e- energy resolution • (NEMO-3 ~ 15% at 1 MeV) • electron:Silicon (Li) detector (~ 5 mm, noise ~ 20-30 keV at normal To) • Very good thin scintillator (~ 2 cm) • gamma: thicker scintillators (100% efficiency instead of 50%) • SOURCES: Decrease the energy losses in the foil • (NEMO-3 ~ 50-80 g/cm2, 60 mm: <DE> ~150 keV) • Active sources (ex:2 foils 20 mm + counters)  internal Background rejection • TRACKING: • Similar Geiger drift wire chamber • TPC in He (Japan group) e- b- g 208Tl internal bkg b- b- ENERGY RESOLUTION IS ONE OF THE MAIN CHALLENGE Goal: < 0.1 bb2n event/year in the bb0n energy window

  37. ILIAS European funding for bb0n research IN2P3 (5 years) NEMO people involved in ILIAS (5 years) • JRA1: low bkg. techn. for Deep Underground Laboratories • Links LSM and Boulby • Develop. Ultra Low Bkg. Facility: Big effort on Germanium • Radon factory 300 kEuros • JRA2: R&D for next detectors • R&D for calorimeter (silicon, scintillators…) • 82Se 2 kg production, purification and source making (2004-2005) • 150Nd enrichment study 300 kEuros • N4: next generation of bb0n detectors • NEMO-Next working groups and Proposal 60 kEuros

  38. New members already interested: USA (Texas University), UK (UCL), Japan (KEK) NOUVEAUX COLLABORATEURS SONT LES BIENVENUS

  39. CONCLUSIONS • NEMO-3 Detector running since 14 Feb. 2003 Data tacking efficiency ~75% • Performance of the detector has been reached ! • 2b2n preliminary results for 100Mo, 82Se and 150Nd already more than 75.000 2b2n events collected • Background study for 2b0n search: • 208Tl (e- Ng channel) : good agreement with HPGe measurements • Neutrons and High-energy g: only 1 bb0n-like event > 4 MeV ! • Radon: 20-30 mBq/m3 inside the detector • a few bb0n-like events/year expected Too high ! • Free radon purification system under construction Radon/8 in Feb. 2004 Radon/50 in Spring 2004 • Future of NEMO: First meeting 3-5 december 2003 start working groups to prepare a design proposal for a next detector Goal (dream ?) for Next NEMO: be able to « detect » 1 gold event/year with <mn> ~ 20 meV

More Related