1 / 44

Szerkezetvizsgálat I.

Szerkezetvizsgálat I. 2012/13. Tömegspektrometria. A tömegspektrometria, különösen korszerű elválasztási módszerekkel kapcsolva, a mai analitikai gyakorlat leghatékonyabb módszere. J.J.Thomson kísérletei alapozták meg a tömegspektrometria létrejöttét,

ivan
Télécharger la présentation

Szerkezetvizsgálat I.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Szerkezetvizsgálat I. 2012/13

  2. Tömegspektrometria A tömegspektrometria, különösen korszerű elválasztási módszerekkel kapcsolva, a mai analitikai gyakorlat leghatékonyabb módszere. J.J.Thomson kísérletei alapozták meg a tömegspektrometria létrejöttét, s egyúttal hozzájárultak a modern kémia kialakulásához az izotópia felfedezésével, kísérleti igazolásával. A szerves vegyületek vizsgálatára az 1950-es évektől kezdték alkalmazni. Elválasztási módszerekkel kombinálva egy-egy készülékrendszer (GC-MS, HPLC-MS, stb.) szinte egy komplett analitikai laboratóriumot képez, amellyel összetett elegyek minőségi és mennyiségi elemzése rövid idő alatt (20-30 perc) elvégezhető, s igen kis mennyiségű alkotók (10-15-10-21 g) meghatározása végezhető el.

  3. Thomson, 1913 In the bottom right corner of this photographic plate are markings for the two isotopes of neon: neon-20 and neon-22.

  4. A tömegspektrometria olyan vizsgálati módszer, amelynél ionos részecskéket választunk el fajlagos tömegük (töltésegységre eső tömegük: m/z) szerint csökkentett nyomáson, elektromos, vagy mágneses mezők segítségével. Az elválasztott ionok intenzitását folyamatosan mérjük, s így egy ionáram intenzitás - fajlagos tömeg függvénykapcsolat-hoz, az ún. tömegspektrumhoz jutunk. Ez a tömegspektrum a minőségi információ alapja.

  5. Main steps of measuring with a mass spectrometer

  6. A tömegspektrométer felépítése Ionforrás Tömeganalizátor Detektor EI, CI, FAB APCI, APPI ESI, MALDI DART Szektoros, quadrupol TOF, QTOF

  7. Tömegspektrométer felépítése 1. Mintabeviteli rendszer (közvetlen: gáz, folyadék, vagy szilárd minta bevitele, közvetett: GC, HPLC) 2. Ionforrás az ionoptikával, 3. Analizátor, 4. Detektor, 5. Vákuumrendszer, 6. Számítógép szabályzó és adatkezelő (adatgyűjtő, feldolgozó, értékelő, archiváló) funkcióval.

  8. Ionizációs módszerek: EI: Electron ionization (formerly known as electron impact) – elektron ionizáció (elektronütközéses) CI: Chemical ionization – kémiai ionizáció FAB: Fast atombombardment – gyors atombombázás MALDI: Matrix-Assisted Laser Desorption/Ionization – mátrix segített lézer deszorpció/ionizáció ESI: Electrospray ionization – elektroporlasztásos ionizáció APCI: Atmospheric pressure chemical ionization – atmoszférikus nyomású kémiai ionizáció APPI: Atmospheric pressure photo ionization – atmoszférikus nyomású fotoionizáció DART: Direct Analysis in Real Time

  9. Elektron ionizáció

  10. MALDI - Matrix-Assisted Laser Desorption/Ionization

  11. Tömeganalizátor Az analizátor választja el az ionforrásból nagy sebességgel érkező ionokat fajlagos tömegük (tömeg/töltés; m/z) szerint. Az elválasztás többféle elv alapján oldható meg.

  12. Szektor típusú analizátorok Mágneses, illetve mágneses és elektromos terekkel választja szét az ionokat

  13. Kvadrupól analizátorok Elektromos mezőt használunk az ionok m/z érték szerinti szeparálásához. A két-két szembelevő rúdra egyen, illetve RF öszetevőjű elektromos feszültséget kapcsolunk. A detektorba csak azok az ionok jutnak el, amelyek végig tudnak haladni a négy rúd közötti térben anélkül, hogy az elektródként viselkedő rudak valamelyikéhez csapódnának.

  14. Kvadrupól ioncsapda analizátorok Lényegében önmagán körbehajlított lineáris kvadrupol rendszer. A csapda belsejében kialakul a háromdimenziós kvadrupólus tér, ami az ionokat oszcilláló alakú pályára kényszeríti.

  15. Repülési idő elven működő analizátorok (time of flight – TOF) Azonos gyorsítótér esetén az ionok sebességét egyértelműen meghatározza m/z arányuk. Ezért az azonos út befutásához szükséges időből az m/z arány meghatározható.

  16. TOF – reflektron

  17. Detektor Erősítés  érzékenység Linearitás  a spektrum torzulásmentessége a, pontdetektor – egy adott m/z értékű iont egy időpillanatban b, sordetektor – az összes m/z értékű iont egyszerre.

  18. - Faraday cella

  19. - Elektronsokszorozó

  20. ESI Hybrid Quadrupole Time of Flight mass spectrometer

  21. LC/MS elrendezés

  22. Kézi mintabevitel

  23. Ionforrás (Source) API-ESI (Atmospheric Pressure Interface-ElectroSpray Ionization)

  24. Ion Transfer stage Az analit ionok elválasztása a szárítógáztól és az oldószertől, valamint minimális veszteséggel való továbbítása a kvadrupol egységbe. (In Source Collision Induced Dissociation – ISCID)

  25. Q-q-stage Analitikai kvadrupol és ütközési cella – MS/MS mérések (Collision Induced Dissociation – CID)

  26. TOF egység Pulzus üzemmód

  27. GC-MS Bomlás nélkül elpárologtatható alkotókból álló elegyek minőségi és mennyiségi elemzését teszi lehetővé.

  28. Kvalitatív azonosítás: - retenciós idő - MS spektrum (adatbank) Kvantitatív azonosítás: kromatogram csúcs terület – koncentráció

  29. A minta adagolás történhet split és split nélküli (splitless) módon. Split üzemmódban a vivőgáz egy része szállítja a mintát a kolonnába, másik része az injektálás után tisztítja a mintaadagoló bevezetőjét (purge), a harmadik – többnyire legnagyobb – része pedig eltávozik a készülékből. Célszerű splitless üzemmódot használni, ha a befecskendezett minta mennyisége kicsi (10 ng-nál kisebb).

  30. A tömegspektrométer általában két üzemmódban működtethető: - pásztázó (Scan) - SIM (Selective Ion Monitoring) Számos, így az általunk használt készülék is képes a két üzemmód együttes alkalmazását jelentő FASST (Fast Automated Scan/SIM Type) módon is működni.

  31. Scan üzemmódban beállíthatjuk a pásztázni kívánt tömegtartományt (pl: m/z=20 – 900), és tulajdonképpen egy háromdimenziós spektrumot vehetünk fel

  32. SIM üzemmódot általában akkor alkalmazunk, ha a mennyiségi meghatározáshoz nagyobb érzékenységre van szükség, mint amilyen Scan módban elérhető. Ekkor a tömegspektrométer analizátora egy, esetleg néhány kiválasztott iont enged át a detektorba.

  33. The standard model includes the following components: • GC-2010 high-performance gas chromatograph • Vacuum differential pumping by the turbo molecular pump with the rotary backing pump • Vacuum gauge for chamber pressure monitoring • Direct-coupled GC/MS interface • Electron Impact (EI) ion source with independent temperature control • Electron energy/current variable dual filament ion source • Quadrupole mass filter with pre-rods • Electron multiplier detector with conversion dynode • Power source and instrument control circuit

More Related