1 / 24

IPCMS - DMONS

PHYSIQUE MESOSCOPIQUE. IPCMS - DMONS. Rodolfo Jalabert Dietmar Weinmann. Post-docs: Jérôme Roccia (DMONS-DON) Guillaume Weick. Etudiants: Guido Intronati (Strasbourg – Buenos Aires) Wojciech Szewc. Domaines de recherche :.

jacques
Télécharger la présentation

IPCMS - DMONS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PHYSIQUE MESOSCOPIQUE IPCMS - DMONS Rodolfo Jalabert Dietmar Weinmann Post-docs: Jérôme Roccia (DMONS-DON) Guillaume Weick Etudiants: Guido Intronati (Strasbourg – Buenos Aires) Wojciech Szewc

  2. Domaines de recherche : Conductance à travers de systèmes fortement corrélés Relaxation du spin Transport dépendant de spin Nanoparticules métalliques Electronique moléculaire (G.W.) Courants permanents et interactions (D.W.) Décohérence et dissipation (R.J.)

  3. Conductance à travers de systèmes fortement corrélés

  4. universality non-local effects interactions individual object nano size Quantum transport

  5. Landauer: conductance from scattering Two terminal conductance: - Separation of sample, leads and reservoirs - Mean field, quasi-particle scattering states at the Fermi energy - Equilibration in the reservoirs leads to dissipation - Contact resistance

  6. Conductance through an interacting region - Is the scattering approach still valid ? without inelastic process (zero temperature) embedding method - How do we calculate the transmission coefficient T ? persistent current for interacting region + leads Ground-state property!

  7. Numerical implementation

  8. Conductance through a correlated region g decreases with U g decreases with LS W = 0 Mott insulator g ≈ 1 for LS odd Perfect conductance only with adiabatic contacts

  9. Even-odd asymmetry and Coulomb blockade LSodd:Resonance NS NS +1 electrons in the interacting regionCoulomb blockade resonance (half filling) LS even: Transport involves charging energy U Interacting region is a barrier Observation of a parity oscillation in the conductance of atomic wires: R.H.M. Smit, et al, PRL ’03 Fabry-Perot interference in a nanotube electron waveguide Llang, et al, Nature ’01.

  10. Can we describe an interacting region by an effective one-particle scatterer? R = R+ + R- ohmic composition Quantum mechanics, non-locality S- S+ R ≠ R+ + R- S = S+ * S- Electron-electron interactions non local effect ! S ≠ S+ * S-

  11. Interaction-induced non-local effects universal correction!

  12. 0.7 anomaly M.A. Topinka et al, Nature, 2001 Conductance quantization in a point contact D.A. Wharam et al, J. Phys. C, 1988

  13. Nanoparticules métalliques

  14. MIE THEORY On the color of gold colloids - 1908 λ >> 2a in a metal: resonance pour surface plasmon

  15. Plasmon resonance in free clusters (visible) Bréchignac et al, PRL 1993 Photo-absorption cross section of 12C nucleus

  16. (ps) ps (eV) ps ps ps TIME RESOLVED EXPERIMENTS, POMP-PROBE Differential transmission correlated electrons collective modes nonthermal regime energy transfer to the matrix e-phonons scattering relaxation to the lattice cooling of the distribution e-e & e-surface scattering, thermal distribution Bigot et al., Chem. Phys., 2000

  17. COLLECTIVE AND RELATIVE COORDINATES relative coordinates:mean field center of mass: harmonic oscillator One-particle potential: uniform jellium background with a Coulomb tail plasmon coupling:dipole field

  18. Drude, τ‾1 confinement, a<τvF SIZE-OSCILLATIONS OF THE LINEWIDTH Kawabata & Kubo, 1966 Na Semiclassical approach Nonmonotonic behavior !! Time-Dependent Local Density Approximation

  19. PLASMON AS A COLLECTIVE EXCITATION RPA eigenenergies : restricted subspace additional subspace Plasmon= superposition of low-energy e-h coupled to high-energy e-h

  20. SPIN DIPOLE EXCITATION dipole absorption cross-section

  21. Décohérence et dissipation

  22. Spin echo (Hahn) H-H

  23. |yH(t) |yH0(t) - H H H0 H0 |yH0, -H (2t) H=H0+S environment Loschmidt echo (fidelity) in the presence of a weak coupling to the environment |yH0(t) |y0 |y0 M(t) = |y0| exp[+i(H0+S)t] exp[-iH0t] |y0|2 How does M(t) depend onH0,S, andt ?

  24. Time-reversal focusing C. Draeger, M. Fink, PRL 1997

More Related