1 / 33

プラズマ基礎数学 図子 秀樹

2007. プラズマ基礎数学 図子 秀樹. 講義内容. Collision Processes (4-17,18) 1-1) collision dynamics and “quasi-collision potential filed” 1-2) Derivation of Fokker Planck equation Conservation laws in global physical quantities (4-24,25) 2-1) particle density, momentum, energy, charge density

jadzia
Télécharger la présentation

プラズマ基礎数学 図子 秀樹

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 2007 プラズマ基礎数学図子 秀樹 講義内容 • Collision Processes (4-17,18) • 1-1) collision dynamics and “quasi-collision potential filed” • 1-2) Derivation of Fokker Planck equation • Conservation laws in global physical quantities (4-24,25) • 2-1) particle density, momentum,energy, charge density • 2-2) derivation of conservation laws • 3. Maxwell equations (5-1,2) • 3-1) derivation of 1st set of Maxwell equations • 3-2) derivation of 2nd set of Maxwell equations • Analysis of fluctuating signals in plasma (5-8,9) • 4-1) digital data acquisition of analog signals and FFT methods • 4-2) Physical meaning of frequency domain

  2. Plasma • Definition of “plasma”=> • Nature of “plasma” => • Description of “plasma” element ? interaction between elements ? transfer information among element ?

  3. 1. Collision Processes • 1-1) interaction between plasma particles Rutherford formula equation of motion effective cross section • 1-2) Kinetic description for plasma Fokker Planck eq.

  4. “衝突”関連するkey wordを3つ考えよ • 運動量の保存、エネルギーの保存、向き、方向、弾性衝突、非弾性衝突、反発(係数)、衝突の平均自由行程、衝突断面積、衝突周波数(時間)

  5. In burning plasma, we have to consider two types of collisions 1) Coulomb collision 2) Nuclear fusion Collision

  6. Characteristics in Coulomb Collisions (Arzimovich’s view) Which one is a trajectory of the test charged particle in a plasma? “Collisional Transport in Magnetized Plasma” Halendar, Sigmar 2002

  7. Spizter’s viewtrajectory in velocity space ( 1962 Phys. of Fully Ionized Gases ) (c) After 10Nth collisions (b) After Nth collisions (a) Initial Do you find rules to describe <DVx> and <DVz>?

  8. Wesson’s view 1) Collisions between test particle and field particles 2) Test particle: ions or electrons 3) Field particles: ions and electrons

  9. Neutral Beam Injection Ebeam~0.1-0.3 MeV H+ WWW MPI

  10. Te increase leads to enhanced scattered spectrum Wcrit Wcrit Kurimoto, Zushi 1997

  11. プラズマ中の衝突をどう記述するか • 衝突過程を運動方程式に組み入れることができるか? • その場合の相互作用は何か? • 繰り返し衝突する過程をどう記述するか? • たくさんの粒子との衝突をどう表すか? • そのとき相互作用はどう記述するのか?

  12. Collision dynamics in Coulomb field Initial velocity v 2f Scattering angle Impact parameter Coulomb field Landau’s text

  13. Energy & Angular momentum

  14. Exercise Idue date; 23 April till noon • 1. Derive Rutherford scattering formula hints: • 2. Conversion from two body collision equations into one particle motion in a central field hints: conversion from v1,v2 into relative velocity and velocity of center of mass

  15. Coulomb collision cross section q=90 scattering, • Scattering cross section ~pb902

  16. Collision in shielded Coulomb field 1) Total target ions 2) Limit in b

  17. Dominant Collision in Momentum change Integration from bmin to Debye length

  18. Dominant Collision in Momentum change

  19. 1個の荷電粒子が標的粒子の作る静電場で“運動量”を微少に変化する。1個の荷電粒子が標的粒子の作る静電場で“運動量”を微少に変化する。 • これを“衝突”と定義する。 • 単位時間内の運動量変化量は     “有効場における”運動方程式として表現でき  その値は微小散乱の集積効果を表す。 • 衝突間の運動量変化量は入射粒子の速度の2乗に反比例する。 • 初期運動方向の運動量ベクトルの変化率は、速度の3乗に反比例し、初期運動方向を向く。

  20. 一般化 • 質量mi、電荷ei、速度viの入射粒子が質量mj、電荷Zej、速度vjの標的粒子と衝突する。   2体問題のみを取り扱い、3個同時に衝突することはないと仮定する。 • 中心力場での換算質量mを持つ粒子の散乱で表現 • 標的粒子は既知の分布関数f(vj)に従う。 • テスト粒子の分布関数の発展を記述したい!

  21. Generalization of momentum eq. Taking into account v-4 dependence of s90, Characteristics of “Force” 1) 2) 3)

  22. Similarity to electro-static force

  23. Generalization of momentum eq. Taking into account v-4 dependence of s90, Introduce a potential H in velocity space i; test particles, j: field particles

  24. Wesson’s view Parallel Motion in Velocity space Can be interpreted by a potential H. Motion in the Perpendicular direction ?

  25. Test particle; i vi vj Field particles; j

  26. Potential H for field particles with Maxwell distribution Assume the isotropic distribution function fj(vj) in velocity space Use the spherical coordinates Vi is set to Z-axis.

  27. 4) 1) Volume element d3v in velocity space 2) 3)

  28. Exercise IIdue date; 23 April till noon 1) 2)

  29. Potential H for field particles with Maxwell distribution

  30. Test particle; i vi vj Field particles; j

  31. まとめ • テスト粒子の小角散乱衝突過程による速度空間での摩擦力(初期速度の方向の減速)は  分布電荷の作る場におけるテスト電荷のクーロン力による運動と同様に考えることができる。 • 初期速度と垂直方向の衝突過程は同様に考えられるか? どのようなpotentialで?

More Related